Source code for mlflow.entities.logged_model_parameter

import sys

from mlflow.entities._mlflow_object import _MlflowObject
from mlflow.protos import service_pb2 as pb2


[docs]class LoggedModelParameter(_MlflowObject): """ MLflow entity representing a parameter of a Model. """ def __init__(self, key, value): if "pyspark.ml" in sys.modules: import pyspark.ml.param if isinstance(key, pyspark.ml.param.Param): key = key.name value = str(value) self._key = key self._value = value @property def key(self): """String key corresponding to the parameter name.""" return self._key @property def value(self): """String value of the parameter.""" return self._value def __eq__(self, __o): if isinstance(__o, self.__class__): return self._key == __o._key return False def __hash__(self): return hash(self._key)
[docs] def to_proto(self): return pb2.LoggedModelParameter(key=self._key, value=self._value)
[docs] @classmethod def from_proto(cls, proto): return cls(key=proto.key, value=proto.value)