mlflow.gateway
-
mlflow.gateway.
get_gateway_uri
() → str[source] Warning
MLflow AI gateway is deprecated and has been replaced by the deployments API for generative AI. See https://mlflow.org/docs/latest/llms/gateway/migration.html for migration.
Returns the currently set MLflow AI Gateway server uri iff set. If the Gateway uri has not been set by using
set_gateway_uri
, anMlflowException
is raised.
-
mlflow.gateway.
set_gateway_uri
(gateway_uri: str)[source] Warning
MLflow AI gateway is deprecated and has been replaced by the deployments API for generative AI. See https://mlflow.org/docs/latest/llms/gateway/migration.html for migration.
- Sets the uri of a configured and running MLflow AI Gateway server in a global context.
Providing a valid uri and calling this function is required in order to use the MLflow AI Gateway fluent APIs.
- Args:
- gateway_uri: The full uri of a running MLflow AI Gateway server or, if running on
Databricks, “databricks”.
-
class
mlflow.gateway.base_models.
ConfigModel
[source] A pydantic model representing Gateway configuration data, such as an OpenAI completions route definition including route name, model name, API keys, etc.
-
class
mlflow.gateway.config.
AI21LabsConfig
(*, ai21labs_api_key: str)[source] -
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_ai21labs_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
AWSBaseConfig
(*, aws_region: Optional[str] = None)[source]
-
class
mlflow.gateway.config.
AWSIdAndKey
(*, aws_region: Optional[str] = None, aws_access_key_id: str, aws_secret_access_key: str, aws_session_token: Optional[str] = None)[source]
-
class
mlflow.gateway.config.
AWSRole
(*, aws_region: Optional[str] = None, aws_role_arn: str, session_length_seconds: int = 900)[source]
-
class
mlflow.gateway.config.
AliasedConfigModel
[source] Enables use of field aliases in a configuration model for backwards compatibility
-
class
mlflow.gateway.config.
AmazonBedrockConfig
(*, aws_config: Union[mlflow.gateway.config.AWSRole, mlflow.gateway.config.AWSIdAndKey, mlflow.gateway.config.AWSBaseConfig])[source]
-
class
mlflow.gateway.config.
AnthropicConfig
(*, anthropic_api_key: str, anthropic_version: str = '2023-06-01')[source] -
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_anthropic_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
CohereConfig
(*, cohere_api_key: str)[source] -
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_cohere_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
GatewayConfig
(*, endpoints: list)[source]
-
class
mlflow.gateway.config.
GeminiConfig
(*, gemini_api_key: str)[source] -
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_gemini_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
HuggingFaceTextGenerationInferenceConfig
(*, hf_server_url: str)[source]
-
class
mlflow.gateway.config.
Limit
(*, calls: int, key: Optional[str] = None, renewal_period: str)[source]
-
class
mlflow.gateway.config.
LimitsConfig
(*, limits: Optional[list] = [])[source]
-
class
mlflow.gateway.config.
MistralConfig
(*, mistral_api_key: str)[source] -
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_mistral_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
MlflowModelServingConfig
(*, model_server_url: str)[source]
-
class
mlflow.gateway.config.
Model
(*, name: Optional[str] = None, provider: Union[str, mlflow.gateway.config.Provider], config: Optional[mlflow.gateway.base_models.ConfigModel] = None)[source] -
config
: Optional[mlflow.gateway.base_models.ConfigModel]
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
provider
: Union[str, mlflow.gateway.config.Provider]
-
classmethod
validate_config
(info, values)[source]
-
classmethod
validate_provider
(value)[source]
-
-
class
mlflow.gateway.config.
ModelInfo
(*, name: Optional[str] = None, provider: mlflow.gateway.config.Provider)[source] -
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
provider
: mlflow.gateway.config.Provider
-
-
class
mlflow.gateway.config.
MosaicMLConfig
(*, mosaicml_api_key: str, mosaicml_api_base: Optional[str] = None)[source] -
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_mosaicml_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
OpenAIAPIType
(value)[source] An enumeration.
-
class
mlflow.gateway.config.
OpenAIConfig
(*, openai_api_key: str, openai_api_type: mlflow.gateway.config.OpenAIAPIType = <OpenAIAPIType.OPENAI: 'openai'>, openai_api_base: Optional[str] = None, openai_api_version: Optional[str] = None, openai_deployment_name: Optional[str] = None, openai_organization: Optional[str] = None)[source] -
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
openai_api_type
: mlflow.gateway.config.OpenAIAPIType
-
classmethod
validate_field_compatibility
(info: dict)[source]
-
classmethod
validate_openai_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
PaLMConfig
(*, palm_api_key: str)[source] -
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_palm_api_key
(value)[source]
-
-
class
mlflow.gateway.config.
Route
(*, name: str, route_type: str, model: mlflow.gateway.config.RouteModelInfo, route_url: str, limit: Optional[mlflow.gateway.config.Limit] = None)[source] -
class
Config
[source]
-
limit
: Optional[mlflow.gateway.config.Limit]
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore', 'json_schema_extra': {'example': {'model': {'name': 'gpt-4o-mini', 'provider': 'openai'}, 'name': 'openai-completions', 'route_type': 'llm/v1/completions', 'route_url': '/gateway/routes/completions/invocations'}}} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
to_endpoint
()[source]
-
class
-
class
mlflow.gateway.config.
RouteConfig
(*, name: str, endpoint_type: mlflow.gateway.config.RouteType, model: mlflow.gateway.config.Model, limit: Optional[mlflow.gateway.config.Limit] = None)[source] -
endpoint_type
: mlflow.gateway.config.RouteType
-
limit
: Optional[mlflow.gateway.config.Limit]
-
model
: mlflow.gateway.config.Model
-
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore', 'populate_by_name': True, 'validate_by_alias': True, 'validate_by_name': True} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
to_route
() → mlflow.gateway.config.Route[source]
-
classmethod
validate_endpoint_name
(route_name)[source]
-
classmethod
validate_limit
(value)[source]
-
classmethod
validate_model
(model)[source]
-
classmethod
validate_route_type
(value)[source]
-
classmethod
validate_route_type_and_model_name
(values)[source]
-
-
class
mlflow.gateway.config.
RouteModelInfo
(*, name: Optional[str] = None, provider: str)[source]
-
class
mlflow.gateway.config.
RouteType
(value)[source] An enumeration.
-
class
mlflow.gateway.config.
TogetherAIConfig
(*, togetherai_api_key: str)[source] -
model_config
: ClassVar[ConfigDict] = {'extra': 'ignore'} Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
classmethod
validate_togetherai_api_key
(value)[source]
-