Skip to main content

Get Started with Keras 3.0 + MLflow

Download this notebook

This tutorial is an end-to-end tutorial on training a MINST classifier with Keras 3.0 and logging results with MLflow. It will demonstrate the use of mlflow.keras.MlflowCallback, and how to subclass it to implement custom logging logic.

Keras is a high-level api that is designed to be simple, flexible, and powerful - allowing everyone from beginners to advanced users to quickly build, train, and evaluate models. Keras 3.0, or Keras Core, is a full rewrite of the Keras codebase that rebases it on top of a modular backend architecture. It makes it possible to run Keras workflows on top of arbitrary frameworks โ€” starting with TensorFlow, JAX, and PyTorch.

Install Packagesโ€‹

pip install -q keras mlflow jax jaxlib torch tensorflow

Import Packages / Configure Backendโ€‹

Keras 3.0 is inherently multi-backend, so you will need to set the backend environment variable before importing the package.

import os

# You can use 'tensorflow', 'torch' or 'jax' as backend. Make sure to set the environment variable before importing.
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
import numpy as np

import mlflow
Using TensorFlow backend

Load Datasetโ€‹

We will use the MNIST dataset. This is a dataset of handwritten digits and will be used for an image classification task. There are 10 classes corresponding to the 10 digits.

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, axis=3)
x_test = np.expand_dims(x_test, axis=3)
x_train[0].shape
(28, 28, 1)
# Visualize Dataset
import matplotlib.pyplot as plt

grid = 3
fig, axes = plt.subplots(grid, grid, figsize=(6, 6))
for i in range(grid):
for j in range(grid):
axes[i][j].imshow(x_train[i * grid + j])
axes[i][j].set_title(f"label={y_train[i * grid + j]}")
plt.tight_layout()

Build Modelโ€‹

We will use the Keras 3.0 sequential API to build a simple CNN.

NUM_CLASSES = 10
INPUT_SHAPE = (28, 28, 1)


def initialize_model():
return keras.Sequential(
[
keras.Input(shape=INPUT_SHAPE),
keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
keras.layers.GlobalAveragePooling2D(),
keras.layers.Dense(NUM_CLASSES, activation="softmax"),
]
)


model = initialize_model()
model.summary()
Model: "sequential"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ Layer (type)                    โ”ƒ Output Shape              โ”ƒ    Param # โ”ƒ
โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ
โ”‚ conv2d (Conv2D)                 โ”‚ (None, 26, 26, 32)        โ”‚        320 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ conv2d_1 (Conv2D)               โ”‚ (None, 24, 24, 32)        โ”‚      9,248 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ conv2d_2 (Conv2D)               โ”‚ (None, 22, 22, 32)        โ”‚      9,248 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ global_average_pooling2d        โ”‚ (None, 32)                โ”‚          0 โ”‚
โ”‚ (GlobalAveragePooling2D)        โ”‚                           โ”‚            โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ dense (Dense)                   โ”‚ (None, 10)                โ”‚        330 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 Total params: 19,146 (74.79 KB)
 Trainable params: 19,146 (74.79 KB)
 Non-trainable params: 0 (0.00 B)

Train Model (Default Callback)โ€‹

We will fit the model on the dataset, using MLflow's mlflow.keras.MlflowCallback to log metrics during training.

BATCH_SIZE = 64  # adjust this based on the memory of your machine
EPOCHS = 3

Log Per Epochโ€‹

An epoch defined as one pass through the entire training dataset.

model = initialize_model()

model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"],
)

run = mlflow.start_run()
model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_split=0.1,
callbacks=[mlflow.keras.MlflowCallback(run)],
)
mlflow.end_run()
Epoch 1/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 30s 34ms/step - accuracy: 0.5922 - loss: 1.2862 - val_accuracy: 0.9427 - val_loss: 0.2075
Epoch 2/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 28s 33ms/step - accuracy: 0.9330 - loss: 0.2286 - val_accuracy: 0.9348 - val_loss: 0.2020
Epoch 3/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 28s 33ms/step - accuracy: 0.9499 - loss: 0.1671 - val_accuracy: 0.9558 - val_loss: 0.1491

Log Resultsโ€‹

The callback for the run would log parameters, metrics and artifacts to MLflow dashboard.

run page

Log Per Batchโ€‹

Within each epoch, the training dataset is broken down to batches based on the defined BATCH_SIZE. If we set the callback to not log based on epochs with log_every_epoch=False, and to log every 5 batches with log_every_n_steps=5, we can adjust the logging to be based on the batches.

model = initialize_model()

model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"],
)

with mlflow.start_run() as run:
model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_split=0.1,
callbacks=[mlflow.keras.MlflowCallback(run, log_every_epoch=False, log_every_n_steps=5)],
)
Epoch 1/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 30s 34ms/step - accuracy: 0.6151 - loss: 1.2100 - val_accuracy: 0.9373 - val_loss: 0.2144
Epoch 2/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 29s 34ms/step - accuracy: 0.9274 - loss: 0.2459 - val_accuracy: 0.9608 - val_loss: 0.1338
Epoch 3/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 28s 34ms/step - accuracy: 0.9477 - loss: 0.1738 - val_accuracy: 0.9577 - val_loss: 0.1454

Log Resultsโ€‹

If we log per epoch, we will only have three datapoints, since there are only 3 epochs:

log per epoch

By logging per batch, we can get more datapoints, but they can be noisier:

log per batch

class MlflowCallbackLogPerBatch(mlflow.keras.MlflowCallback):
def on_batch_end(self, batch, logs=None):
if self.log_every_n_steps is None or logs is None:
return
if (batch + 1) % self.log_every_n_steps == 0:
self.metrics_logger.record_metrics(logs, self._log_step)
self._log_step += self.log_every_n_steps
model = initialize_model()

model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"],
)

with mlflow.start_run() as run:
model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_split=0.1,
callbacks=[MlflowCallbackLogPerBatch(run, log_every_epoch=False, log_every_n_steps=5)],
)
Epoch 1/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 29s 34ms/step - accuracy: 0.5645 - loss: 1.4105 - val_accuracy: 0.9187 - val_loss: 0.2826
Epoch 2/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 29s 34ms/step - accuracy: 0.9257 - loss: 0.2615 - val_accuracy: 0.9602 - val_loss: 0.1368
Epoch 3/3
844/844 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 29s 34ms/step - accuracy: 0.9456 - loss: 0.1800 - val_accuracy: 0.9678 - val_loss: 0.1037

Evaluationโ€‹

Similar to training, you can use the callback to log the evaluation result.

with mlflow.start_run() as run:
model.evaluate(x_test, y_test, callbacks=[mlflow.keras_core.MlflowCallback(run)])
313/313 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 4ms/step - accuracy: 0.9541 - loss: 0.1487