Source code for mlflow.langchain

"""
The ``mlflow.langchain`` module provides an API for logging and loading LangChain models.
This module exports multivariate LangChain models in the langchain flavor and univariate
LangChain models in the pyfunc flavor:

LangChain (native) format
    This is the main flavor that can be accessed with LangChain APIs.
:py:mod:`mlflow.pyfunc`
    Produced for use by generic pyfunc-based deployment tools and for batch inference.

.. _LangChain:
    https://python.langchain.com/en/latest/index.html
"""

import functools
import importlib
import inspect
import logging
import os
import tempfile
import warnings
from typing import Any, Iterator, Optional, Union

import cloudpickle
import pandas as pd
import yaml
from packaging.version import Version

import mlflow
from mlflow import pyfunc
from mlflow.exceptions import MlflowException
from mlflow.langchain.databricks_dependencies import _detect_databricks_dependencies
from mlflow.langchain.runnables import _load_runnables, _save_runnables
from mlflow.langchain.utils import (
    _BASE_LOAD_KEY,
    _MODEL_LOAD_KEY,
    _RUNNABLE_LOAD_KEY,
    _load_base_lcs,
    _save_base_lcs,
    _validate_and_prepare_lc_model_or_path,
    lc_runnables_types,
    patch_langchain_type_to_cls_dict,
    register_pydantic_v1_serializer_cm,
)
from mlflow.models import Model, ModelInputExample, ModelSignature, get_model_info
from mlflow.models.dependencies_schemas import (
    _clear_dependencies_schemas,
    _get_dependencies_schema_from_model,
    _get_dependencies_schemas,
)
from mlflow.models.model import MLMODEL_FILE_NAME, MODEL_CODE_PATH, MODEL_CONFIG
from mlflow.models.resources import DatabricksFunction, Resource, _ResourceBuilder
from mlflow.models.signature import _infer_signature_from_input_example
from mlflow.models.utils import (
    _convert_llm_input_data,
    _load_model_code_path,
    _save_example,
)
from mlflow.pyfunc import FLAVOR_NAME as PYFUNC_FLAVOR_NAME
from mlflow.tracing.provider import trace_disabled
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.types.schema import ColSpec, DataType, Schema
from mlflow.utils.annotations import experimental
from mlflow.utils.autologging_utils import (
    autologging_integration,
    autologging_is_disabled,
    safe_patch,
)
from mlflow.utils.databricks_utils import (
    _get_databricks_serverless_env_vars,
    is_in_databricks_model_serving_environment,
    is_in_databricks_serverless_runtime,
    is_mlflow_tracing_enabled_in_model_serving,
)
from mlflow.utils.docstring_utils import (
    LOG_MODEL_PARAM_DOCS,
    docstring_version_compatibility_warning,
    format_docstring,
)
from mlflow.utils.environment import (
    _CONDA_ENV_FILE_NAME,
    _CONSTRAINTS_FILE_NAME,
    _PYTHON_ENV_FILE_NAME,
    _REQUIREMENTS_FILE_NAME,
    _mlflow_conda_env,
    _process_conda_env,
    _process_pip_requirements,
    _PythonEnv,
    _validate_env_arguments,
)
from mlflow.utils.file_utils import get_total_file_size, write_to
from mlflow.utils.model_utils import (
    _add_code_from_conf_to_system_path,
    _get_flavor_configuration,
    _validate_and_copy_code_paths,
    _validate_and_copy_file_to_directory,
    _validate_and_get_model_config_from_file,
    _validate_and_prepare_target_save_path,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement

logger = logging.getLogger(mlflow.__name__)

FLAVOR_NAME = "langchain"
_MODEL_TYPE_KEY = "model_type"


[docs]def get_default_pip_requirements(): """ Returns: A list of default pip requirements for MLflow Models produced by this flavor. Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment that, at a minimum, contains these requirements. """ # pin pydantic and cloudpickle version as they are used in langchain # model saving and loading return list(map(_get_pinned_requirement, ["langchain", "pydantic", "cloudpickle"]))
[docs]def get_default_conda_env(): """ Returns: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
[docs]@experimental @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) @docstring_version_compatibility_warning(FLAVOR_NAME) @trace_disabled # Suppress traces for internal predict calls while saving model def save_model( lc_model, path, conda_env=None, code_paths=None, mlflow_model=None, signature: ModelSignature = None, input_example: ModelInputExample = None, pip_requirements=None, extra_pip_requirements=None, metadata=None, loader_fn=None, persist_dir=None, example_no_conversion=None, model_config=None, streamable: Optional[bool] = None, ): """ Save a LangChain model to a path on the local file system. Args: lc_model: A LangChain model, which could be a `Chain <https://python.langchain.com/docs/modules/chains/>`_, `Agent <https://python.langchain.com/docs/modules/agents/>`_, `retriever <https://python.langchain.com/docs/modules/data_connection/retrievers/>`_, or `RunnableSequence <https://python.langchain.com/docs/modules/chains/foundational/sequential_chains#using-lcel>`_, or a path containing the `LangChain model code <https://github.com/mlflow/mlflow/blob/master/examples/langchain/chain_as_code_driver.py>` for the above types. When using model as path, make sure to set the model by using :func:`mlflow.models.set_model()`. .. Note:: Experimental: Using model as path may change or be removed in a future release without warning. path: Local path where the serialized model (as YAML) is to be saved. conda_env: {{ conda_env }} code_paths: {{ code_paths }} mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to. signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. If not specified, the model signature would be set according to `lc_model.input_keys` and `lc_model.output_keys` as columns names, and `DataType.string` as the column type. Alternatively, you can explicitly specify the model signature. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models import infer_signature chain = LLMChain(llm=llm, prompt=prompt) prediction = chain.run(input_str) input_columns = [ {"type": "string", "name": input_key} for input_key in chain.input_keys ] signature = infer_signature(input_columns, predictions) input_example: {{ input_example }} pip_requirements: {{ pip_requirements }} extra_pip_requirements: {{ extra_pip_requirements }} metadata: {{ metadata }} loader_fn: A function that's required for models containing objects that aren't natively serialized by LangChain. This function takes a string `persist_dir` as an argument and returns the specific object that the model needs. Depending on the model, this could be a retriever, vectorstore, requests_wrapper, embeddings, or database. For RetrievalQA Chain and retriever models, the object is a (`retriever <https://python.langchain.com/docs/modules/data_connection/retrievers/>`_). For APIChain models, it's a (`requests_wrapper <https://python.langchain.com/docs/modules/agents/tools/integrations/requests>`_). For HypotheticalDocumentEmbedder models, it's an (`embeddings <https://python.langchain.com/docs/modules/data_connection/text_embedding/>`_). For SQLDatabaseChain models, it's a (`database <https://python.langchain.com/docs/modules/agents/toolkits/sql_database>`_). persist_dir: The directory where the object is stored. The `loader_fn` takes this string as the argument to load the object. This is optional for models containing objects that aren't natively serialized by LangChain. MLflow logs the content in this directory as artifacts in the subdirectory named `persist_dir_data`. Here is the code snippet for logging a RetrievalQA chain with `loader_fn` and `persist_dir`: .. Note:: In langchain_community >= 0.0.27, loading pickled data requires providing the ``allow_dangerous_deserialization`` argument. .. code-block:: python qa = RetrievalQA.from_llm(llm=OpenAI(), retriever=db.as_retriever()) def load_retriever(persist_directory): embeddings = OpenAIEmbeddings() vectorstore = FAISS.load_local( persist_directory, embeddings, # you may need to add the line below # for langchain_community >= 0.0.27 allow_dangerous_deserialization=True, ) return vectorstore.as_retriever() with mlflow.start_run() as run: logged_model = mlflow.langchain.log_model( qa, artifact_path="retrieval_qa", loader_fn=load_retriever, persist_dir=persist_dir, ) See a complete example in examples/langchain/retrieval_qa_chain.py. example_no_conversion: This parameter is deprecated and will be removed in a future release. It's no longer used and can be safely removed. Input examples are not converted anymore. model_config: The model configuration to apply to the model if saving model from code. This configuration is available during model loading. .. Note:: Experimental: This parameter may change or be removed in a future release without warning. streamable: A boolean value indicating if the model supports streaming prediction. If True, the model must implement `stream` method. If None, streamable is set to True if the model implements `stream` method. Default to `None`. """ with tempfile.TemporaryDirectory() as temp_dir: import langchain from langchain.schema import BaseRetriever lc_model_or_path = _validate_and_prepare_lc_model_or_path(lc_model, loader_fn, temp_dir) _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) path = os.path.abspath(path) _validate_and_prepare_target_save_path(path) if isinstance(model_config, str): model_config = _validate_and_get_model_config_from_file(model_config) model_code_path = None if isinstance(lc_model_or_path, str): # The LangChain model is defined as Python code located in the file at the path # specified by `lc_model`. Verify that the path exists and, if so, copy it to the # model directory along with any other specified code modules model_code_path = lc_model_or_path lc_model = _load_model_code_path(model_code_path, model_config) _validate_and_copy_file_to_directory(model_code_path, path, "code") else: lc_model = lc_model_or_path code_dir_subpath = _validate_and_copy_code_paths(code_paths, path) if mlflow_model is None: mlflow_model = Model() saved_example = _save_example(mlflow_model, input_example, path, example_no_conversion) if signature is None: if saved_example is not None: wrapped_model = _LangChainModelWrapper(lc_model) signature = _infer_signature_from_input_example(saved_example, wrapped_model) else: if hasattr(lc_model, "input_keys"): input_columns = [ ColSpec(type=DataType.string, name=input_key) for input_key in lc_model.input_keys ] input_schema = Schema(input_columns) else: input_schema = None if ( hasattr(lc_model, "output_keys") and len(lc_model.output_keys) == 1 and not isinstance(lc_model, BaseRetriever) ): output_columns = [ ColSpec(type=DataType.string, name=output_key) for output_key in lc_model.output_keys ] output_schema = Schema(output_columns) else: # TODO: empty output schema if multiple output_keys or is a retriever. fix later! # https://databricks.atlassian.net/browse/ML-34706 output_schema = None signature = ( ModelSignature(input_schema, output_schema) if input_schema or output_schema else None ) if signature is not None: mlflow_model.signature = signature if metadata is not None: mlflow_model.metadata = metadata with _get_dependencies_schemas() as dependencies_schemas: schema = dependencies_schemas.to_dict() if schema is not None: if mlflow_model.metadata is None: mlflow_model.metadata = {} mlflow_model.metadata.update(schema) if streamable is None: streamable = hasattr(lc_model, "stream") model_data_kwargs = {} flavor_conf = {} if not isinstance(model_code_path, str): model_data_kwargs = _save_model(lc_model, path, loader_fn, persist_dir) flavor_conf = { _MODEL_TYPE_KEY: lc_model.__class__.__name__, **model_data_kwargs, } pyfunc.add_to_model( mlflow_model, loader_module="mlflow.langchain", conda_env=_CONDA_ENV_FILE_NAME, python_env=_PYTHON_ENV_FILE_NAME, code=code_dir_subpath, predict_stream_fn="predict_stream", streamable=streamable, model_code_path=model_code_path, model_config=model_config, **model_data_kwargs, ) needs_databricks_auth = False if Version(langchain.__version__) >= Version("0.0.311") and mlflow_model.resources is None: if databricks_resources := _detect_databricks_dependencies(lc_model): logger.info( "Attempting to auto-detect Databricks resource dependencies for the " "current langchain model. Dependency auto-detection is " "best-effort and may not capture all dependencies of your langchain " "model, resulting in authorization errors when serving or querying " "your model. We recommend that you explicitly pass `resources` " "to mlflow.langchain.log_model() to ensure authorization to " "dependent resources succeeds when the model is deployed." ) serialized_databricks_resources = _ResourceBuilder.from_resources(databricks_resources) mlflow_model.resources = serialized_databricks_resources needs_databricks_auth = any( isinstance(r, DatabricksFunction) for r in databricks_resources ) mlflow_model.add_flavor( FLAVOR_NAME, langchain_version=langchain.__version__, code=code_dir_subpath, streamable=streamable, **flavor_conf, ) if size := get_total_file_size(path): mlflow_model.model_size_bytes = size mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) if conda_env is None: if pip_requirements is None: default_reqs = get_default_pip_requirements() extra_env_vars = ( _get_databricks_serverless_env_vars() if needs_databricks_auth and is_in_databricks_serverless_runtime() else None ) inferred_reqs = mlflow.models.infer_pip_requirements( str(path), FLAVOR_NAME, fallback=default_reqs, extra_env_vars=extra_env_vars ) default_reqs = sorted(set(inferred_reqs).union(default_reqs)) else: default_reqs = None conda_env, pip_requirements, pip_constraints = _process_pip_requirements( default_reqs, pip_requirements, extra_pip_requirements ) else: conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) if pip_constraints: write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
[docs]@experimental @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) @docstring_version_compatibility_warning(FLAVOR_NAME) @trace_disabled # Suppress traces for internal predict calls while logging model def log_model( lc_model, artifact_path, conda_env=None, code_paths=None, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, pip_requirements=None, extra_pip_requirements=None, metadata=None, loader_fn=None, persist_dir=None, example_no_conversion=None, run_id=None, model_config=None, streamable=None, resources: Optional[Union[list[Resource], str]] = None, ): """ Log a LangChain model as an MLflow artifact for the current run. Args: lc_model: A LangChain model, which could be a `Chain <https://python.langchain.com/docs/modules/chains/>`_, `Agent <https://python.langchain.com/docs/modules/agents/>`_, or `retriever <https://python.langchain.com/docs/modules/data_connection/retrievers/>`_ or a path containing the `LangChain model code <https://github.com/mlflow/mlflow/blob/master/examples/langchain/chain_as_code_driver.py>` for the above types. When using model as path, make sure to set the model by using :func:`mlflow.models.set_model()`. .. Note:: Experimental: Using model as path may change or be removed in a future release without warning. artifact_path: Run-relative artifact path. conda_env: {{ conda_env }} code_paths: {{ code_paths }} registered_model_name: This argument may change or be removed in a future release without warning. If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. If not specified, the model signature would be set according to `lc_model.input_keys` and `lc_model.output_keys` as columns names, and `DataType.string` as the column type. Alternatively, you can explicitly specify the model signature. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models import infer_signature chain = LLMChain(llm=llm, prompt=prompt) prediction = chain.run(input_str) input_columns = [ {"type": "string", "name": input_key} for input_key in chain.input_keys ] signature = infer_signature(input_columns, predictions) input_example: {{ input_example }} await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. pip_requirements: {{ pip_requirements }} extra_pip_requirements: {{ extra_pip_requirements }} metadata: {{ metadata }} loader_fn: A function that's required for models containing objects that aren't natively serialized by LangChain. This function takes a string `persist_dir` as an argument and returns the specific object that the model needs. Depending on the model, this could be a retriever, vectorstore, requests_wrapper, embeddings, or database. For RetrievalQA Chain and retriever models, the object is a (`retriever <https://python.langchain.com/docs/modules/data_connection/retrievers/>`_). For APIChain models, it's a (`requests_wrapper <https://python.langchain.com/docs/modules/agents/tools/integrations/requests>`_). For HypotheticalDocumentEmbedder models, it's an (`embeddings <https://python.langchain.com/docs/modules/data_connection/text_embedding/>`_). For SQLDatabaseChain models, it's a (`database <https://python.langchain.com/docs/modules/agents/toolkits/sql_database>`_). persist_dir: The directory where the object is stored. The `loader_fn` takes this string as the argument to load the object. This is optional for models containing objects that aren't natively serialized by LangChain. MLflow logs the content in this directory as artifacts in the subdirectory named `persist_dir_data`. Here is the code snippet for logging a RetrievalQA chain with `loader_fn` and `persist_dir`: .. Note:: In langchain_community >= 0.0.27, loading pickled data requires providing the ``allow_dangerous_deserialization`` argument. .. code-block:: python qa = RetrievalQA.from_llm(llm=OpenAI(), retriever=db.as_retriever()) def load_retriever(persist_directory): embeddings = OpenAIEmbeddings() vectorstore = FAISS.load_local( persist_directory, embeddings, # you may need to add the line below # for langchain_community >= 0.0.27 allow_dangerous_deserialization=True, ) return vectorstore.as_retriever() with mlflow.start_run() as run: logged_model = mlflow.langchain.log_model( qa, artifact_path="retrieval_qa", loader_fn=load_retriever, persist_dir=persist_dir, ) See a complete example in examples/langchain/retrieval_qa_chain.py. example_no_conversion: This parameter is deprecated and will be removed in a future release. It's no longer used and can be safely removed. Input examples are not converted anymore. run_id: run_id to associate with this model version. If specified, we resume the run and log the model to that run. Otherwise, a new run is created. Default to None. model_config: The model configuration to apply to the model if saving model from code. This configuration is available during model loading. .. Note:: Experimental: This parameter may change or be removed in a future release without warning. streamable: A boolean value indicating if the model supports streaming prediction. If True, the model must implement `stream` method. If None, If None, streamable is set to True if the model implements `stream` method. Default to `None`. resources: A list of model resources or a resources.yaml file containing a list of resources required to serve the model. If logging a LangChain model with dependencies (e.g. on LLM model serving endpoints), we encourage explicitly passing dependencies via this parameter. Otherwise, ``log_model`` will attempt to infer dependencies, but dependency auto-inference is best-effort and may miss some dependencies. Returns: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. """ return Model.log( artifact_path=artifact_path, flavor=mlflow.langchain, registered_model_name=registered_model_name, lc_model=lc_model, conda_env=conda_env, code_paths=code_paths, signature=signature, input_example=input_example, await_registration_for=await_registration_for, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, metadata=metadata, loader_fn=loader_fn, persist_dir=persist_dir, example_no_conversion=example_no_conversion, run_id=run_id, model_config=model_config, streamable=streamable, resources=resources, )
# patch_langchain_type_to_cls_dict here as we attempt to load model # if it's saved by `dict` method @patch_langchain_type_to_cls_dict def _save_model(model, path, loader_fn, persist_dir): if Version(cloudpickle.__version__) < Version("2.1.0"): warnings.warn( "If you are constructing a custom LangChain model, " "please upgrade cloudpickle to version 2.1.0 or later " "using `pip install cloudpickle>=2.1.0` " "to ensure the model can be loaded correctly." ) with register_pydantic_v1_serializer_cm(): if isinstance(model, lc_runnables_types()): return _save_runnables(model, path, loader_fn=loader_fn, persist_dir=persist_dir) else: return _save_base_lcs(model, path, loader_fn, persist_dir) @patch_langchain_type_to_cls_dict def _load_model(local_model_path, flavor_conf): from mlflow.langchain._langchain_autolog import _update_langchain_model_config # model_type is not accurate as the class can be subclass # of supported types, we define _MODEL_LOAD_KEY to ensure # which load function to use model_load_fn = flavor_conf.get(_MODEL_LOAD_KEY) with register_pydantic_v1_serializer_cm(): if model_load_fn == _RUNNABLE_LOAD_KEY: model = _load_runnables(local_model_path, flavor_conf) elif model_load_fn == _BASE_LOAD_KEY: model = _load_base_lcs(local_model_path, flavor_conf) else: raise mlflow.MlflowException( "Failed to load LangChain model. Unknown model type: " f"{flavor_conf.get(_MODEL_TYPE_KEY)}" ) # To avoid double logging, we set _mlflow_model_logged to True # when the model is loaded if not autologging_is_disabled(FLAVOR_NAME): if _update_langchain_model_config(model): model._mlflow_model_logged = True model.run_id = get_model_info(local_model_path).run_id return model class _LangChainModelWrapper: def __init__(self, lc_model, model_path=None): self.lc_model = lc_model self.model_path = model_path def get_raw_model(self): """ Returns the underlying model. """ return self.lc_model def predict( self, data: Union[pd.DataFrame, list[Union[str, dict[str, Any]]], Any], params: Optional[dict[str, Any]] = None, ) -> list[Union[str, dict[str, Any]]]: """ Args: data: Model input data. params: Additional parameters to pass to the model for inference. Returns: Model predictions. """ # TODO: We don't automatically turn tracing on in OSS model serving, because we haven't # implemented storage option for traces in OSS model serving (counterpart to the # Inference Table in Databricks model serving). if ( is_in_databricks_model_serving_environment() # TODO: This env var was once used for controlling whether or not to inject the # tracer in Databricks model serving. However, now we have the new env var # `ENABLE_MLFLOW_TRACING` to control that. We don't remove this condition # right now in the interest of caution, but we should remove this condition # after making sure that the functionality is stable. and os.environ.get("MLFLOW_ENABLE_TRACE_IN_SERVING", "false").lower() == "true" # if this is False, tracing is disabled and we shouldn't inject the tracer and is_mlflow_tracing_enabled_in_model_serving() ): from mlflow.langchain.langchain_tracer import MlflowLangchainTracer callbacks = [MlflowLangchainTracer()] else: callbacks = None return self._predict_with_callbacks(data, params, callback_handlers=callbacks) def _update_dependencies_schemas_in_prediction_context(self, callback_handlers): from mlflow.langchain.langchain_tracer import MlflowLangchainTracer if ( callback_handlers and ( tracer := next( (c for c in callback_handlers if isinstance(c, MlflowLangchainTracer)), None ) ) and self.model_path ): model = Model.load(self.model_path) context = tracer._prediction_context if schema := _get_dependencies_schema_from_model(model): context.update(**schema) @experimental def _predict_with_callbacks( self, data: Union[pd.DataFrame, list[Union[str, dict[str, Any]]], Any], params: Optional[dict[str, Any]] = None, callback_handlers=None, convert_chat_responses=False, ) -> list[Union[str, dict[str, Any]]]: """ Args: data: Model input data. params: Additional parameters to pass to the model for inference. callback_handlers: Callback handlers to pass to LangChain. convert_chat_responses: If true, forcibly convert response to chat model response format. Returns: Model predictions. """ from mlflow.langchain.api_request_parallel_processor import process_api_requests self._update_dependencies_schemas_in_prediction_context(callback_handlers) messages, return_first_element = self._prepare_predict_messages(data) results = process_api_requests( lc_model=self.lc_model, requests=messages, callback_handlers=callback_handlers, convert_chat_responses=convert_chat_responses, params=params or {}, ) return results[0] if return_first_element else results def _prepare_predict_messages(self, data): """ Return a tuple of (preprocessed_data, return_first_element) `preprocessed_data` is always a list, and `return_first_element` means if True, we should return the first element of inference result, otherwise we should return the whole inference result. """ data = _convert_llm_input_data(data) if not isinstance(data, list): # if the input data is not a list (i.e. single input), # we still need to convert it to a one-element list `[data]` # because `process_api_requests` only accepts list as valid input. # and in this case, # we should return the first element of the inference result # because we change input `data` to `[data]` return [data], True if isinstance(data, list): return data, False raise mlflow.MlflowException.invalid_parameter_value( "Input must be a pandas DataFrame or a list " f"for model {self.lc_model.__class__.__name__}" ) def _prepare_predict_stream_messages(self, data): data = _convert_llm_input_data(data) if isinstance(data, list): # `predict_stream` only accepts single input. # but `enforce_schema` might convert single input into a list like `[single_input]` # so extract the first element in the list. if len(data) != 1: raise MlflowException( f"'predict_stream' requires single input, but it got input data {data}" ) return data[0] return data def predict_stream( self, data: Any, params: Optional[dict[str, Any]] = None, ) -> Iterator[Union[str, dict[str, Any]]]: """ Args: data: Model input data, only single input is allowed. params: Additional parameters to pass to the model for inference. Returns: An iterator of model prediction chunks. """ from mlflow.langchain.api_request_parallel_processor import ( process_stream_request, ) data = self._prepare_predict_stream_messages(data) return process_stream_request( lc_model=self.lc_model, request_json=data, params=params or {}, ) def _predict_stream_with_callbacks( self, data: Any, params: Optional[dict[str, Any]] = None, callback_handlers=None, convert_chat_responses=False, ) -> Iterator[Union[str, dict[str, Any]]]: """ Args: data: Model input data, only single input is allowed. params: Additional parameters to pass to the model for inference. callback_handlers: Callback handlers to pass to LangChain. convert_chat_responses: If true, forcibly convert response to chat model response format. Returns: An iterator of model prediction chunks. """ from mlflow.langchain.api_request_parallel_processor import ( process_stream_request, ) self._update_dependencies_schemas_in_prediction_context(callback_handlers) data = self._prepare_predict_stream_messages(data) return process_stream_request( lc_model=self.lc_model, request_json=data, callback_handlers=callback_handlers, convert_chat_responses=convert_chat_responses, params=params or {}, ) def _load_pyfunc(path: str, model_config: Optional[dict[str, Any]] = None): # noqa: D417 """Load PyFunc implementation for LangChain. Called by ``pyfunc.load_model``. Args: path: Local filesystem path to the MLflow Model with the ``langchain`` flavor. """ return _LangChainModelWrapper(_load_model_from_local_fs(path, model_config), path) def _load_model_from_local_fs(local_model_path, model_config_overrides=None): flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) pyfunc_flavor_conf = _get_flavor_configuration( model_path=local_model_path, flavor_name=PYFUNC_FLAVOR_NAME ) # Add code from the langchain flavor to the system path _add_code_from_conf_to_system_path(local_model_path, flavor_conf) # The model_code_path and the model_config were previously saved langchain flavor but now we # also save them inside the pyfunc flavor. For backwards compatibility of previous models, # we need to check both places. if MODEL_CODE_PATH in pyfunc_flavor_conf or MODEL_CODE_PATH in flavor_conf: model_config = pyfunc_flavor_conf.get(MODEL_CONFIG, flavor_conf.get(MODEL_CONFIG, None)) if isinstance(model_config, str): config_path = os.path.join( local_model_path, os.path.basename(model_config), ) model_config = _validate_and_get_model_config_from_file(config_path) flavor_code_path = pyfunc_flavor_conf.get( MODEL_CODE_PATH, flavor_conf.get(MODEL_CODE_PATH, None) ) model_code_path = os.path.join( local_model_path, os.path.basename(flavor_code_path), ) try: model = _load_model_code_path( model_code_path, {**(model_config or {}), **(model_config_overrides or {})} ) finally: # We would like to clean up the dependencies schema which is set to global # after loading the mode to avoid the schema being used in the next model loading _clear_dependencies_schemas() return model else: return _load_model(local_model_path, flavor_conf)
[docs]@experimental @docstring_version_compatibility_warning(FLAVOR_NAME) @trace_disabled # Suppress traces while loading model def load_model(model_uri, dst_path=None): """ Load a LangChain model from a local file or a run. Args: model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html# artifact-locations>`_. dst_path: The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created. Returns: A LangChain model instance. """ local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path) return _load_model_from_local_fs(local_model_path)
def _patch_runnable_cls(cls): """ For classes that are subclasses of Runnable, we patch the `invoke`, `batch`, `stream` and `ainvoke`, `abatch`, `astream` methods for autologging. Args: cls: The class to patch. """ from mlflow.langchain._langchain_autolog import patched_inference patch_functions = ["invoke", "batch", "stream", "ainvoke", "abatch", "astream"] for func_name in patch_functions: if hasattr(cls, func_name): safe_patch( FLAVOR_NAME, cls, func_name, functools.partial(patched_inference, func_name), ) def _inspect_module_and_patch_cls(module_name, inspected_modules, patched_classes): """ Internal method to inspect the module and patch classes that are subclasses of Runnable for autologging. """ from langchain_core.runnables import Runnable if module_name not in inspected_modules: inspected_modules.add(module_name) try: for _, obj in inspect.getmembers(importlib.import_module(module_name)): if inspect.ismodule(obj) and ( obj.__name__.startswith("langchain") or obj.__name__.startswith("langgraph") ): _inspect_module_and_patch_cls(obj.__name__, inspected_modules, patched_classes) elif ( inspect.isclass(obj) and obj.__name__ not in patched_classes and issubclass(obj, Runnable) ): _patch_runnable_cls(obj) patched_classes.add(obj.__name__) except Exception as e: logger.debug(f"Failed to patch module {module_name}. Error: {e}", exc_info=True)
[docs]@experimental @autologging_integration(FLAVOR_NAME) def autolog( log_input_examples=False, log_model_signatures=False, log_models=False, log_datasets=False, disable=False, exclusive=False, disable_for_unsupported_versions=False, silent=False, registered_model_name=None, extra_tags=None, extra_model_classes=None, log_traces=True, ): """ Enables (or disables) and configures autologging from Langchain to MLflow. Args: log_input_examples: If ``True``, input examples from inference data are collected and logged along with Langchain model artifacts during inference. If ``False``, input examples are not logged. Note: Input examples are MLflow model attributes and are only collected if ``log_models`` is also ``True``. log_model_signatures: If ``True``, :py:class:`ModelSignatures <mlflow.models.ModelSignature>` describing model inputs and outputs are collected and logged along with Langchain model artifacts during inference. If ``False``, signatures are not logged. Note: Model signatures are MLflow model attributes and are only collected if ``log_models`` is also ``True``. log_models: If ``True``, langchain models are logged as MLflow model artifacts. If ``False``, langchain models are not logged. Input examples and model signatures, which are attributes of MLflow models, are also omitted when ``log_models`` is ``False``. log_datasets: If ``True``, dataset information is logged to MLflow Tracking if applicable. If ``False``, dataset information is not logged. disable: If ``True``, disables the Langchain autologging integration. If ``False``, enables the Langchain autologging integration. exclusive: If ``True``, autologged content is not logged to user-created fluent runs. If ``False``, autologged content is logged to the active fluent run, which may be user-created. disable_for_unsupported_versions: If ``True``, disable autologging for versions of langchain that have not been tested against this version of the MLflow client or are incompatible. silent: If ``True``, suppress all event logs and warnings from MLflow during Langchain autologging. If ``False``, show all events and warnings during Langchain autologging. registered_model_name: If given, each time a model is trained, it is registered as a new model version of the registered model with this name. The registered model is created if it does not already exist. extra_tags: A dictionary of extra tags to set on each managed run created by autologging. extra_model_classes: A list of langchain classes to log in addition to the default classes. We do not guarantee classes specified in this list can be logged as a model, but tracing will be supported. Note that all classes within the list must be subclasses of Runnable, and we only patch `invoke`, `batch`, and `stream` methods for tracing. log_traces: If ``True``, traces are logged for Langchain models by using MlflowLangchainTracer as a callback during inference. If ``False``, no traces are collected during inference. Default to ``True``. """ from mlflow.langchain._langchain_autolog import patched_inference # avoid duplicate patching patched_classes = set() # avoid infinite recursion inspected_modules = set() # Get all installed LangChain packages for pkg in importlib.metadata.distributions(): if pkg.metadata["Name"].startswith("langchain"): module_name = pkg.metadata["Name"].replace("-", "_") _inspect_module_and_patch_cls(module_name, inspected_modules, patched_classes) # If LangGraph is installed, patch the classes. LangGraph does not define members # under the top level module, so we need to hardcode the submodules to patch. if pkg.metadata["Name"] == "langgraph": langgraph_submodules = [ "langgraph.graph", "langgraph.prebuilt", "langgraph.pregel", ] for submodule in langgraph_submodules: _inspect_module_and_patch_cls(submodule, inspected_modules, patched_classes) if extra_model_classes: from langchain_core.runnables import Runnable unsupported_classes = [] for cls in extra_model_classes: if cls.__name__ in patched_classes: continue elif inspect.isclass(cls) and issubclass(cls, Runnable): _patch_runnable_cls(cls) patched_classes.add(cls.__name__) else: unsupported_classes.append(cls.__name__) if unsupported_classes: logger.warning( f"Unsupported classes found in extra_model_classes: {unsupported_classes}. " "Only subclasses of Runnable are supported." ) try: from langchain.agents.agent import AgentExecutor from langchain.chains.base import Chain for cls in [AgentExecutor, Chain]: safe_patch( FLAVOR_NAME, cls, "__call__", functools.partial(patched_inference, "__call__"), ) except ImportError: logger.debug( "AgentExecutor and Chain are not available in the current environment." "Skipping patching for __call__ method.", exc_info=True, ) try: from langchain_core.retrievers import BaseRetriever safe_patch( FLAVOR_NAME, BaseRetriever, "get_relevant_documents", functools.partial(patched_inference, "get_relevant_documents"), ) except ImportError: logger.debug( "BaseRetriever is not available in the current environment." "Skipping patching for get_relevant_documents method.", exc_info=True, )