Source code for mlflow.models.signature

"""
The :py:mod:`mlflow.models.signature` module provides an API for specification of model signature.

Model signature defines schema of model input and output. See :py:class:`mlflow.types.schema.Schema`
for more details on Schema and data types.
"""

import inspect
import logging
import re
import warnings
from copy import deepcopy
from dataclasses import dataclass, is_dataclass
from typing import TYPE_CHECKING, Any, Optional, Union, get_type_hints

import numpy as np
import pandas as pd

from mlflow.environment_variables import _MLFLOW_TESTING
from mlflow.exceptions import MlflowException
from mlflow.models import Model
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.utils import _contains_params, _Example
from mlflow.protos.databricks_pb2 import INVALID_PARAMETER_VALUE, RESOURCE_DOES_NOT_EXIST
from mlflow.store.artifact.models_artifact_repo import ModelsArtifactRepository
from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository
from mlflow.tracking.artifact_utils import _download_artifact_from_uri, _upload_artifact_to_uri
from mlflow.types.schema import AnyType, ColSpec, ParamSchema, Schema, convert_dataclass_to_schema
from mlflow.types.type_hints import (
    InvalidTypeHintException,
    _get_example_validation_result,
    _infer_schema_from_list_type_hint,
    _infer_schema_from_type_hint,
    _is_list_type_hint,
)
from mlflow.types.utils import _infer_param_schema, _infer_schema
from mlflow.utils.annotations import filter_user_warnings_once
from mlflow.utils.uri import append_to_uri_path

# At runtime, we don't need  `pyspark.sql.dataframe`
if TYPE_CHECKING:
    try:
        import pyspark.sql.dataframe

        MlflowInferableDataset = Union[
            pd.DataFrame, np.ndarray, dict[str, np.ndarray], pyspark.sql.dataframe.DataFrame
        ]
    except ImportError:
        MlflowInferableDataset = Union[pd.DataFrame, np.ndarray, dict[str, np.ndarray]]

_logger = logging.getLogger(__name__)

_LOG_MODEL_INFER_SIGNATURE_WARNING_TEMPLATE = (
    "Failed to infer the model signature from the input example. Reason: %s. To see the full "
    "traceback, set the logging level to DEBUG via "
    '`logging.getLogger("mlflow").setLevel(logging.DEBUG)`.'
)


[docs]class ModelSignature: """ ModelSignature specifies schema of model's inputs, outputs and params. ModelSignature can be :py:func:`inferred <mlflow.models.infer_signature>` from training dataset, model predictions using and params for inference, or constructed by hand by passing an input and output :py:class:`Schema <mlflow.types.Schema>`, and params :py:class:`ParamSchema <mlflow.types.ParamSchema>`. """ def __init__( self, inputs: Union[Schema, dataclass] = None, outputs: Union[Schema, dataclass] = None, params: ParamSchema = None, ): if inputs and not isinstance(inputs, Schema) and not is_dataclass(inputs): raise TypeError( "inputs must be either None, mlflow.models.signature.Schema, or a dataclass," f"got '{type(inputs).__name__}'" ) if outputs and not isinstance(outputs, Schema) and not is_dataclass(outputs): raise TypeError( "outputs must be either None, mlflow.models.signature.Schema, or a dataclass," f"got '{type(outputs).__name__}'" ) if params and not isinstance(params, ParamSchema): raise TypeError( "If params are provided, they must by of type mlflow.models.signature.ParamSchema, " f"got '{type(params).__name__}'" ) if all(x is None for x in [inputs, outputs, params]): raise ValueError("At least one of inputs, outputs or params must be provided") if is_dataclass(inputs): self.inputs = convert_dataclass_to_schema(inputs) else: self.inputs = inputs if is_dataclass(outputs): self.outputs = convert_dataclass_to_schema(outputs) else: self.outputs = outputs self.params = params self.__is_signature_from_type_hint = False self.__is_type_hint_from_example = False @property def _is_signature_from_type_hint(self): return self.__is_signature_from_type_hint @_is_signature_from_type_hint.setter def _is_signature_from_type_hint(self, value): self.__is_signature_from_type_hint = value @property def _is_type_hint_from_example(self): return self.__is_type_hint_from_example @_is_type_hint_from_example.setter def _is_type_hint_from_example(self, value): self.__is_type_hint_from_example = value
[docs] def to_dict(self) -> dict[str, Any]: """ Serialize into a 'jsonable' dictionary. Input and output schema are represented as json strings. This is so that the representation is compact when embedded in an MLmodel yaml file. Returns: dictionary representation with input and output schema represented as json strings. """ return { "inputs": self.inputs.to_json() if self.inputs else None, "outputs": self.outputs.to_json() if self.outputs else None, "params": self.params.to_json() if self.params else None, }
[docs] @classmethod def from_dict(cls, signature_dict: dict[str, Any]): """ Deserialize from dictionary representation. Args: signature_dict: Dictionary representation of model signature. Expected dictionary format: `{'inputs': <json string>, 'outputs': <json string>, 'params': <json string>" }` Returns: ModelSignature populated with the data form the dictionary. """ inputs = Schema.from_json(x) if (x := signature_dict.get("inputs")) else None outputs = Schema.from_json(x) if (x := signature_dict.get("outputs")) else None params = ParamSchema.from_json(x) if (x := signature_dict.get("params")) else None return cls(inputs, outputs, params)
def __eq__(self, other) -> bool: return ( isinstance(other, ModelSignature) and self.inputs == other.inputs and self.outputs == other.outputs and self.params == other.params ) def __repr__(self) -> str: return ( "inputs: \n" f" {self.inputs!r}\n" "outputs: \n" f" {self.outputs!r}\n" "params: \n" f" {self.params!r}\n" )
[docs]def infer_signature( model_input: Any = None, model_output: "MlflowInferableDataset" = None, params: Optional[dict[str, Any]] = None, ) -> ModelSignature: """ Infer an MLflow model signature from the training data (input), model predictions (output) and parameters (for inference). The signature represents model input and output as data frames with (optionally) named columns and data type specified as one of types defined in :py:class:`mlflow.types.DataType`. It also includes parameters schema for inference, . This method will raise an exception if the user data contains incompatible types or is not passed in one of the supported formats listed below. The input should be one of these: - pandas.DataFrame - pandas.Series - dictionary of { name -> numpy.ndarray} - numpy.ndarray - pyspark.sql.DataFrame - scipy.sparse.csr_matrix - scipy.sparse.csc_matrix - dictionary / list of dictionaries of JSON-convertible types The element types should be mappable to one of :py:class:`mlflow.types.DataType`. For pyspark.sql.DataFrame inputs, columns of type DateType and TimestampType are both inferred as type :py:data:`datetime <mlflow.types.DataType.datetime>`, which is coerced to TimestampType at inference. Args: model_input: Valid input to the model. E.g. (a subset of) the training dataset. model_output: Valid model output. E.g. Model predictions for the (subset of) training dataset. params: Valid parameters for inference. It should be a dictionary of parameters that can be set on the model during inference by passing `params` to pyfunc `predict` method. An example of valid parameters: .. code-block:: python from mlflow.models import infer_signature from mlflow.transformers import generate_signature_output # Define parameters for inference params = { "num_beams": 5, "max_length": 30, "do_sample": True, "remove_invalid_values": True, } # Infer the signature including parameters signature = infer_signature( data, generate_signature_output(model, data), params=params, ) # Saving model with model signature mlflow.transformers.save_model( model, path=model_path, signature=signature, ) pyfunc_loaded = mlflow.pyfunc.load_model(model_path) # Passing params to `predict` function directly result = pyfunc_loaded.predict(data, params=params) Returns: ModelSignature """ schemas = {"inputs": model_input, "outputs": model_output} for key, data in schemas.items(): if data is not None: try: schemas[key] = ( convert_dataclass_to_schema(data) if is_dataclass(data) else _infer_schema(data) ) except Exception: extra_msg = ( ("Note that MLflow doesn't validate data types during inference for AnyType. ") if key == "inputs" else "" ) _logger.warning( f"Failed to infer schema for {key}. " f"Setting schema to `Schema([ColSpec(type=AnyType())]` as default. {extra_msg}" "To see the full traceback, set logging level to DEBUG.", exc_info=_logger.isEnabledFor(logging.DEBUG), ) schemas[key] = Schema([ColSpec(type=AnyType())]) schemas["params"] = _infer_param_schema(params) if params else None return ModelSignature(**schemas)
# `t\w*\.` matches the `typing` module or its alias _LIST_OF_STRINGS_PATTERN = re.compile(r"^(t\w*\.)?list\[str\]$", re.IGNORECASE) def _is_list_str(hint_str): return _LIST_OF_STRINGS_PATTERN.match(hint_str.replace(" ", "")) is not None _LIST_OF_STR_DICT_PATTERN = re.compile( r"^(t\w*\.)?list\[(t\w*\.)?dict\[str,str\]\]$", re.IGNORECASE ) def _is_list_of_string_dict(hint_str): return _LIST_OF_STR_DICT_PATTERN.match(hint_str.replace(" ", "")) is not None def _infer_hint_from_str(hint_str): if _is_list_str(hint_str): return list[str] elif _is_list_of_string_dict(hint_str): return list[dict[str, str]] else: return None def _get_arg_names(f): return list(inspect.signature(f).parameters.keys()) class _TypeHints: def __init__(self, input_=None, output=None): self.input = input_ self.output = output def __repr__(self): return f"<input: {self.input}, output: {self.output}>" def _extract_type_hints(f, input_arg_index): """ Extract type hints from a function. Args: f: Function to extract type hints from. input_arg_index: Index of the function argument that corresponds to the model input. Returns: A `_TypeHints` object containing the input and output type hints. """ if not hasattr(f, "__annotations__") and hasattr(f, "__call__"): return _extract_type_hints(f.__call__, input_arg_index) if f.__annotations__ == {}: return _TypeHints() arg_names = list(filter(lambda x: x != "self", _get_arg_names(f))) if len(arg_names) - 1 < input_arg_index: raise MlflowException.invalid_parameter_value( f"The specified input argument index ({input_arg_index}) is out of range for the " "function signature: {}".format(input_arg_index, arg_names) ) arg_name = arg_names[input_arg_index] try: hints = get_type_hints(f) except ( TypeError, NameError, # To handle this issue: https://github.com/python/typing/issues/797 ): # --- # from __future__ import annotations # postpones evaluation of 'list[str]' # # def f(x: list[str]) -> list[str]: # ^^^^^^^^^ Evaluating this expression ('list[str]') results in a TypeError in # Python < 3.9 because the built-in list type is not subscriptable. # return x # --- # Best effort to infer type hints from strings hints = {} for arg in [arg_name, "return"]: if hint_str := f.__annotations__.get(arg, None): if hint := _infer_hint_from_str(hint_str): hints[arg] = hint else: _logger.info("Unsupported type hint: %s, skipping schema inference", hint_str) except Exception as e: _logger.warning("Failed to extract type hints from function %s: %s", f.__name__, repr(e)) return _TypeHints() return _TypeHints(hints.get(arg_name), hints.get("return")) def _is_context_in_predict_function_signature(*, func=None, parameters=None): if parameters is None: if func is None: raise ValueError("Either `func` or `parameters` must be provided.") parameters = inspect.signature(func).parameters return ( # predict(self, context, model_input, ...) "context" in parameters # predict(self, ctx, model_input, ...) ctx can be any parameter name or len([param for param in parameters if param not in ("self", "params")]) == 2 ) @filter_user_warnings_once def _infer_signature_from_type_hints( func, type_hints: _TypeHints, input_example=None ) -> Optional[ModelSignature]: """ Infer the signature from type hints. """ if type_hints.input is None: return None params = None params_key = "params" if _contains_params(input_example): input_example, params = input_example _logger.info("Inferring model signature from type hints") try: input_schema = _infer_schema_from_list_type_hint(type_hints.input) except InvalidTypeHintException as e: warnings.warn(f"Failed to infer signature from type hint: {e.message}", stacklevel=3) return None # only warn if the pyfunc decorator is not used and schema can # be inferred from the input type hint _pyfunc_decorator_used = getattr(func, "_is_pyfunc", False) if not _pyfunc_decorator_used: # stacklevel is 3 because we have a decorator warnings.warn( "Decorate your function with `@mlflow.pyfunc.utils.pyfunc` to enable auto " "data validation against model input type hints.", stacklevel=3, ) default_output_schema = Schema([ColSpec(type=AnyType())]) is_output_type_hint_valid = False output_schema = None if type_hints.output: try: # output type hint doesn't need to be a list # but if it's a list, we infer the schema from the list type hint # to be consistent with input schema inference output_schema = ( _infer_schema_from_list_type_hint(type_hints.output) if _is_list_type_hint(type_hints.output) else _infer_schema_from_type_hint(type_hints.output) ) is_output_type_hint_valid = True except InvalidTypeHintException as e: _logger.info( f"Unsupported output type hint, setting output schema to AnyType. {e}", stacklevel=2, ) output_schema = default_output_schema else: output_schema = default_output_schema params_schema = _infer_param_schema(params) if params else None if input_example is not None: # only validate input example here if pyfunc decorator is not used # because when the decorator is used, the input is validated in the predict function if not _pyfunc_decorator_used and ( msg := _get_example_validation_result( example=input_example, type_hint=type_hints.input ).error_message ): _logger.warning( "Input example is not compatible with the type hint of the `predict` function. " f"Error: {msg}" ) else: kwargs = ( {params_key: params} if params and params_key in inspect.signature(func).parameters else {} ) # This is for PythonModel's predict function if _is_context_in_predict_function_signature(func=func): inputs = [None, input_example] else: inputs = [input_example] _logger.info("Running the predict function to generate output based on input example") try: output_example = func(*inputs, **kwargs) except Exception: _logger.warning( "Failed to run the predict function on input example. To see the full " "traceback, set logging level to DEBUG.", exc_info=_logger.isEnabledFor(logging.DEBUG), ) else: if is_output_type_hint_valid and ( msg := _get_example_validation_result( example=output_example, type_hint=type_hints.output ).error_message ): _logger.warning( f"Failed to validate output `{output_example}` against type hint " f"`{type_hints.output}`, setting output schema to AnyType. " f"Error: {msg}" ) output_schema = default_output_schema if not any([input_schema, output_schema, params_schema]): return None signature = ModelSignature(inputs=input_schema, outputs=output_schema, params=params_schema) signature._is_signature_from_type_hint = True return signature def _infer_signature_from_input_example( input_example: Optional[_Example], wrapped_model ) -> Optional[ModelSignature]: """ Infer the signature from an example input and a PyFunc wrapped model. Catches all exceptions. Args: input_example: Saved _Example object that contains input example instance. wrapped_model: A PyFunc wrapped model which has a `predict` method. Returns: A `ModelSignature` object containing the inferred schema of both the model's inputs based on the `input_example` and the model's outputs based on the prediction from the `wrapped_model`. """ from mlflow.pyfunc import _validate_prediction_input if input_example is None: return None try: # Copy the input example so that it is not mutated by predict() input_data = deepcopy(input_example.inference_data) params = input_example.inference_params input_schema = _infer_schema(input_data) params_schema = _infer_param_schema(params) if params else None # do the same validation as pyfunc predict to make sure the signature is correctly # applied to the model input_data, params = _validate_prediction_input( input_data, params, input_schema, params_schema ) prediction = wrapped_model.predict(input_data, params=params) # For column-based inputs, 1D numpy arrays likely signify row-based predictions. Thus, we # convert them to a Pandas series for inferring as a single ColSpec Schema. if ( not input_schema.is_tensor_spec() and isinstance(prediction, np.ndarray) and prediction.ndim == 1 ): prediction = pd.Series(prediction) output_schema = None try: output_schema = _infer_schema(prediction) except Exception: # try assign output schema if failing to infer it from prediction for langchain models try: from mlflow.langchain import _LangChainModelWrapper from mlflow.langchain.utils.chat import _ChatResponse except ImportError: pass else: if isinstance(wrapped_model, _LangChainModelWrapper) and isinstance( prediction, _ChatResponse ): output_schema = prediction.get_schema() if output_schema is None: _logger.warning( "Failed to infer model output schema from prediction result, setting " "output schema to AnyType. For full traceback, set logging level to debug.", exc_info=_logger.isEnabledFor(logging.DEBUG), ) output_schema = Schema([ColSpec(type=AnyType())]) return ModelSignature(input_schema, output_schema, params_schema) except Exception as e: if _MLFLOW_TESTING.get(): raise _logger.warning( _LOG_MODEL_INFER_SIGNATURE_WARNING_TEMPLATE, repr(e), exc_info=_logger.isEnabledFor(logging.DEBUG), )
[docs]def set_signature( model_uri: str, signature: ModelSignature, ): """ Sets the model signature for specified model artifacts. The process involves downloading the MLmodel file in the model artifacts (if it's non-local), updating its model signature, and then overwriting the existing MLmodel file. Should the artifact repository associated with the model artifacts disallow overwriting, this function will fail. Furthermore, as model registry artifacts are read-only, model artifacts located in the model registry and represented by ``models:/`` URI schemes are not compatible with this API. To set a signature on a model version, first set the signature on the source model artifacts. Following this, generate a new model version using the updated model artifacts. For more information about setting signatures on model versions, see `this doc section <https://www.mlflow.org/docs/latest/models.html#set-signature-on-mv>`_. Args: model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``mlflow-artifacts:/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. Please note that model URIs with the ``models:/`` scheme are not supported. signature: ModelSignature to set on the model. .. code-block:: python :caption: Example import mlflow from mlflow.models import set_signature, infer_signature # load model from run artifacts run_id = "96771d893a5e46159d9f3b49bf9013e2" artifact_path = "models" model_uri = f"runs:/{run_id}/{artifact_path}" model = mlflow.pyfunc.load_model(model_uri) # determine model signature test_df = ... predictions = model.predict(test_df) signature = infer_signature(test_df, predictions) # set the signature for the logged model set_signature(model_uri, signature) """ assert isinstance( signature, ModelSignature ), "The signature argument must be a ModelSignature object" if ModelsArtifactRepository.is_models_uri(model_uri): raise MlflowException( f'Failed to set signature on "{model_uri}". ' + "Model URIs with the `models:/` scheme are not supported.", INVALID_PARAMETER_VALUE, ) try: resolved_uri = model_uri if RunsArtifactRepository.is_runs_uri(model_uri): resolved_uri = RunsArtifactRepository.get_underlying_uri(model_uri) ml_model_file = _download_artifact_from_uri( artifact_uri=append_to_uri_path(resolved_uri, MLMODEL_FILE_NAME) ) except Exception as ex: raise MlflowException( f'Failed to download an "{MLMODEL_FILE_NAME}" model file from "{model_uri}"', RESOURCE_DOES_NOT_EXIST, ) from ex model_meta = Model.load(ml_model_file) model_meta.signature = signature model_meta.save(ml_model_file) _upload_artifact_to_uri(ml_model_file, resolved_uri)