Source code for mlflow.models.utils

import base64
import datetime as dt
import decimal
import importlib
import json
import logging
import os
import re
import sys
import tempfile
import uuid
import warnings
from contextlib import contextmanager
from copy import deepcopy
from typing import Any, Dict, List, Optional, Union

import numpy as np
import pandas as pd

import mlflow
from mlflow.exceptions import INVALID_PARAMETER_VALUE, MlflowException
from mlflow.models import Model
from mlflow.models.model_config import _set_model_config
from mlflow.store.artifact.utils.models import get_model_name_and_version
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.types import DataType, ParamSchema, ParamSpec, Schema, TensorSpec
from mlflow.types.schema import Array, Map, Object, Property
from mlflow.types.utils import (
    TensorsNotSupportedException,
    _infer_param_schema,
    clean_tensor_type,
)
from mlflow.utils.annotations import experimental
from mlflow.utils.proto_json_utils import (
    NumpyEncoder,
    dataframe_from_parsed_json,
    parse_inputs_data,
    parse_tf_serving_input,
)
from mlflow.utils.uri import get_databricks_profile_uri_from_artifact_uri

try:
    from scipy.sparse import csc_matrix, csr_matrix

    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False

try:
    from pyspark.sql import DataFrame as SparkDataFrame
    from pyspark.sql import Row
    from pyspark.sql.types import (
        ArrayType,
        BinaryType,
        DateType,
        FloatType,
        IntegerType,
        ShortType,
        StructType,
        TimestampType,
    )

    HAS_PYSPARK = True
except ImportError:
    SparkDataFrame = None
    HAS_PYSPARK = False


INPUT_EXAMPLE_PATH = "artifact_path"
EXAMPLE_DATA_KEY = "inputs"
EXAMPLE_PARAMS_KEY = "params"
EXAMPLE_FILENAME = "input_example.json"
SERVING_INPUT_PATH = "serving_input_path"
SERVING_INPUT_FILENAME = "serving_input_example.json"

# TODO: import from scoring_server after refactoring
DF_SPLIT = "dataframe_split"
INPUTS = "inputs"
SERVING_PARAMS_KEY = "params"

ModelInputExample = Union[
    pd.DataFrame, np.ndarray, dict, list, "csr_matrix", "csc_matrix", str, bytes, tuple
]

PyFuncLLMSingleInput = Union[
    Dict[str, Any],
    bool,
    bytes,
    float,
    int,
    str,
]

PyFuncLLMOutputChunk = Union[
    Dict[str, Any],
    str,
]

PyFuncInput = Union[
    pd.DataFrame,
    pd.Series,
    np.ndarray,
    "csc_matrix",
    "csr_matrix",
    List[Any],
    Dict[str, Any],
    dt.datetime,
    bool,
    bytes,
    float,
    int,
    str,
]
PyFuncOutput = Union[pd.DataFrame, pd.Series, np.ndarray, list, str]

if HAS_PYSPARK:
    PyFuncInput = Union[PyFuncInput, SparkDataFrame]
    PyFuncOutput = Union[PyFuncOutput, SparkDataFrame]

_logger = logging.getLogger(__name__)

_FEATURE_STORE_FLAVOR = "databricks.feature_store.mlflow_model"


def _is_scalar(x):
    return np.isscalar(x) or x is None


def _validate_params(params):
    try:
        _infer_param_schema(params)
    except MlflowException:
        _logger.warning(f"Invalid params found in input example: {params}")
        raise


def _is_ndarray(x):
    return isinstance(x, np.ndarray) or (
        isinstance(x, dict) and all(isinstance(ary, np.ndarray) for ary in x.values())
    )


def _is_sparse_matrix(x):
    if not HAS_SCIPY:
        # we can safely assume that if no scipy is installed,
        # the user won't log scipy sparse matrices
        return False
    return isinstance(x, (csc_matrix, csr_matrix))


def _handle_ndarray_nans(x: np.ndarray):
    if np.issubdtype(x.dtype, np.number):
        return np.where(np.isnan(x), None, x)
    else:
        return x


def _handle_ndarray_input(input_array: Union[np.ndarray, dict]):
    if isinstance(input_array, dict):
        result = {}
        for name in input_array.keys():
            result[name] = _handle_ndarray_nans(input_array[name]).tolist()
        return result
    else:
        return _handle_ndarray_nans(input_array).tolist()


def _handle_sparse_matrix(x: Union["csr_matrix", "csc_matrix"]):
    return {
        "data": _handle_ndarray_nans(x.data).tolist(),
        "indices": x.indices.tolist(),
        "indptr": x.indptr.tolist(),
        "shape": list(x.shape),
    }


def _handle_dataframe_nans(df: pd.DataFrame):
    return df.where(df.notnull(), None)


def _coerce_to_pandas_df(input_ex):
    if isinstance(input_ex, dict):
        # We need to be compatible with infer_schema's behavior, where
        # it infers each value's type directly.
        if all(
            isinstance(x, str) or (isinstance(x, list) and all(_is_scalar(y) for y in x))
            for x in input_ex.values()
        ):
            # e.g.
            # data = {"a": "a", "b": ["a", "b", "c"]}
            # >>> pd.DataFrame([data])
            #    a          b
            # 0  a  [a, b, c]
            _logger.info(
                "We convert input dictionaries to pandas DataFrames such that "
                "each key represents a column, collectively constituting a "
                "single row of data. If you would like to save data as "
                "multiple rows, please convert your data to a pandas "
                "DataFrame before passing to input_example."
            )
        input_ex = pd.DataFrame([input_ex])
    elif np.isscalar(input_ex):
        input_ex = pd.DataFrame([input_ex])
    elif not isinstance(input_ex, pd.DataFrame):
        input_ex = None
    return input_ex


def _convert_dataframe_to_split_dict(df):
    result = _handle_dataframe_nans(df).to_dict(orient="split")
    # Do not include row index
    del result["index"]
    if all(df.columns == range(len(df.columns))):
        # No need to write default column index out
        del result["columns"]
    return result


def _contains_nd_array(data):
    import numpy as np

    if isinstance(data, np.ndarray):
        return True
    if isinstance(data, list):
        return any(_contains_nd_array(x) for x in data)
    if isinstance(data, dict):
        return any(_contains_nd_array(x) for x in data.values())
    return False


class _Example:
    """
    Represents an input example for MLflow model.

    Contains jsonable data that can be saved with the model and meta data about the exported format
    that can be saved with :py:class:`Model <mlflow.models.Model>`.

    The _Example is created from example data provided by user. The example(s) can be provided as
    pandas.DataFrame, numpy.ndarray, python dictionary or python list. The assumption is that the
    example contains jsonable elements (see storage format section below). The input example will
    be saved as a json serializable object if it is a pandas DataFrame or numpy array.
    If the example is a tuple, the first element is considered as the example data and the second
    element is considered as the example params.

    NOTE: serving input example is not supported for sparse matrices yet.

    Metadata:

    The _Example metadata contains the following information:
        - artifact_path: Relative path to the serialized example within the model directory.
        - serving_input_path: Relative path to the serialized example used for model serving
            within the model directory.
        - type: Type of example data provided by the user. Supported types are:
            - ndarray
            - dataframe
            - json_object
            - sparse_matrix_csc
            - sparse_matrix_csr
            If the `type` is `dataframe`, `pandas_orient` is also stored in the metadata. This
            attribute specifies how is the dataframe encoded in json. For example, "split" value
            signals that the data is stored as object with columns and data attributes.

    Storage Format:

    The examples are stored as json for portability and readability. Therefore, the contents of the
    example(s) must be jsonable. MLflow will make the following conversions automatically on behalf
    of the user:

        - binary values: :py:class:`bytes` or :py:class:`bytearray` are converted to base64
          encoded strings.
        - numpy types: Numpy types are converted to the corresponding python types or their closest
          equivalent.
        - csc/csr matrix: similar to 2 dims numpy array, csc/csr matrix are converted to
          corresponding python types or their closest equivalent.
    """

    def __init__(self, input_example: ModelInputExample):
        try:
            import pyspark.sql

            if isinstance(input_example, pyspark.sql.DataFrame):
                raise MlflowException(
                    "Examples can not be provided as Spark Dataframe. "
                    "Please make sure your example is of a small size and "
                    "turn it into a pandas DataFrame."
                )
        except ImportError:
            pass

        self.info = {
            INPUT_EXAMPLE_PATH: EXAMPLE_FILENAME,
        }

        self._inference_data, self._inference_params = _split_input_data_and_params(
            deepcopy(input_example)
        )
        if self._inference_params:
            self.info[EXAMPLE_PARAMS_KEY] = "true"
        model_input = deepcopy(self._inference_data)

        is_unified_llm_input = False
        if isinstance(model_input, dict):
            """
            Supported types are:
            - Dict[str, Union[DataType, List, Dict]] --> type: json_object
            - Dict[str, numpy.ndarray] --> type: ndarray
            """
            if any(isinstance(values, np.ndarray) for values in model_input.values()):
                if not all(isinstance(values, np.ndarray) for values in model_input.values()):
                    raise MlflowException.invalid_parameter_value(
                        "Mixed types in dictionary are not supported as input examples. "
                        "Found numpy arrays and other types."
                    )
                self.info["type"] = "ndarray"
                model_input = _handle_ndarray_input(model_input)
                self.serving_input = {INPUTS: model_input}
            else:
                # TODO: remove this warning after 2.17.0 release
                warnings.warn(
                    "Since MLflow 2.16.0, we no longer convert dictionary input example "
                    "to pandas Dataframe, and directly save it as a json object. "
                    "If the model expects a pandas DataFrame input instead, please "
                    "pass the pandas DataFrame as input example directly.",
                    FutureWarning,
                    stacklevel=2,
                )

                from mlflow.pyfunc.utils.serving_data_parser import is_unified_llm_input

                self.info["type"] = "json_object"
                is_unified_llm_input = is_unified_llm_input(model_input)
                if is_unified_llm_input:
                    self.serving_input = model_input
                else:
                    self.serving_input = {INPUTS: model_input}
        elif isinstance(model_input, np.ndarray):
            """type: ndarray"""
            model_input = _handle_ndarray_input(model_input)
            self.info["type"] = "ndarray"
            self.serving_input = {INPUTS: model_input}
        elif isinstance(model_input, list):
            """
            Supported types are:
            - List[DataType]
            - List[Dict[str, Union[DataType, List, Dict]]]
            --> type: json_object
            """
            if _contains_nd_array(model_input):
                raise TensorsNotSupportedException(
                    "Numpy arrays in list are not supported as input examples."
                )
            self.info["type"] = "json_object"
            self.serving_input = {INPUTS: model_input}
        elif _is_sparse_matrix(model_input):
            """
            Supported types are:
            - scipy.sparse.csr_matrix
            - scipy.sparse.csc_matrix
            Note: This type of input is not supported by the scoring server yet
            """
            if isinstance(model_input, csc_matrix):
                example_type = "sparse_matrix_csc"
            else:
                example_type = "sparse_matrix_csr"
            self.info["type"] = example_type
            model_input = _handle_sparse_matrix(model_input)
            self.serving_input = None
        elif isinstance(model_input, pd.DataFrame):
            model_input = _convert_dataframe_to_split_dict(model_input)
            self.serving_input = {DF_SPLIT: model_input}
            orient = "split" if "columns" in model_input else "values"
            self.info.update(
                {
                    "type": "dataframe",
                    "pandas_orient": orient,
                }
            )
        elif np.isscalar(model_input):
            self.info["type"] = "json_object"
            self.serving_input = {INPUTS: model_input}
        else:
            raise MlflowException.invalid_parameter_value(
                "Expected one of the following types:\n"
                "- pandas.DataFrame\n"
                "- numpy.ndarray\n"
                "- dictionary of (name -> numpy.ndarray)\n"
                "- scipy.sparse.csr_matrix\n"
                "- scipy.sparse.csc_matrix\n"
                "- dict\n"
                "- list\n"
                "- scalars\n"
                f"but got '{type(model_input)}'",
            )

        if self._inference_params is not None:
            """
            Save input data and params with their respective keys, so we can load them separately.
            """
            model_input = {
                EXAMPLE_DATA_KEY: model_input,
                EXAMPLE_PARAMS_KEY: self._inference_params,
            }
            if self.serving_input:
                if is_unified_llm_input:
                    self.serving_input = {
                        **(self.serving_input or {}),
                        **self._inference_params,
                    }
                else:
                    self.serving_input = {
                        **(self.serving_input or {}),
                        SERVING_PARAMS_KEY: self._inference_params,
                    }

        self.json_input_example = json.dumps(model_input, cls=NumpyEncoder)
        if self.serving_input:
            self.json_serving_input = json.dumps(self.serving_input, cls=NumpyEncoder, indent=2)
            self.info[SERVING_INPUT_PATH] = SERVING_INPUT_FILENAME
        else:
            self.json_serving_input = None

    def save(self, parent_dir_path: str):
        """
        Save the example as json at ``parent_dir_path``/`self.info['artifact_path']`.
        Save serving input as json at ``parent_dir_path``/`self.info['serving_input_path']`.
        """
        with open(os.path.join(parent_dir_path, self.info[INPUT_EXAMPLE_PATH]), "w") as f:
            f.write(self.json_input_example)
        if self.json_serving_input:
            with open(os.path.join(parent_dir_path, self.info[SERVING_INPUT_PATH]), "w") as f:
                f.write(self.json_serving_input)

    @property
    def inference_data(self):
        """
        Returns the input example in a form that PyFunc wrapped models can score.
        """
        return self._inference_data

    @property
    def inference_params(self):
        """
        Returns the params dictionary that PyFunc wrapped models can use for scoring.
        """
        return self._inference_params


def _contains_params(input_example):
    # For tuple input, we assume the first item is input_example data
    # and the second item is params dictionary.
    return (
        isinstance(input_example, tuple)
        and len(input_example) == 2
        and isinstance(input_example[1], dict)
    )


def _split_input_data_and_params(input_example):
    if _contains_params(input_example):
        input_data, inference_params = input_example
        _validate_params(inference_params)
        return input_data, inference_params
    return input_example, None


[docs]@experimental def convert_input_example_to_serving_input(input_example) -> Optional[str]: """ Helper function to convert a model's input example to a serving input example that can be used for model inference in the scoring server. Args: input_example: model input example. Supported types are pandas.DataFrame, numpy.ndarray, dictionary of (name -> numpy.ndarray), list, scalars and dicts with json serializable values. Returns: serving input example as a json string """ if input_example is None: return None example = _Example(input_example) return example.json_serving_input
def _save_example( mlflow_model: Model, input_example: Optional[ModelInputExample], path: str, no_conversion=None ) -> Optional[_Example]: """ Saves example to a file on the given path and updates passed Model with example metadata. The metadata is a dictionary with the following fields: - 'artifact_path': example path relative to the model directory. - 'type': Type of example. Currently the supported values are 'dataframe' and 'ndarray' - One of the following metadata based on the `type`: - 'pandas_orient': Used to store dataframes. Determines the json encoding for dataframe examples in terms of pandas orient convention. Defaults to 'split'. - 'format: Used to store tensors. Determines the standard used to store a tensor input example. MLflow uses a JSON-formatted string representation of TF serving input. Args: mlflow_model: Model metadata that will get updated with the example metadata. path: Where to store the example file. Should be model the model directory. Returns: _Example object that contains saved input example. """ if input_example is None: return None # TODO: remove this and all example_no_conversion param after 2.17.0 release if no_conversion is not None: warnings.warn( "The `example_no_conversion` parameter is deprecated since mlflow 2.16.0 and will be " "removed in a future release. This parameter is no longer used and safe to be removed, " "MLflow no longer converts input examples when logging the model.", FutureWarning, stacklevel=2, ) example = _Example(input_example) example.save(path) mlflow_model.saved_input_example_info = example.info return example def _get_mlflow_model_input_example_dict(mlflow_model: Model, path: str): """ Args: mlflow_model: Model metadata. path: Path to the model directory. Returns: Input example or None if the model has no example. """ if mlflow_model.saved_input_example_info is None: return None example_type = mlflow_model.saved_input_example_info["type"] if example_type not in [ "dataframe", "ndarray", "sparse_matrix_csc", "sparse_matrix_csr", "json_object", ]: raise MlflowException(f"This version of mlflow can not load example of type {example_type}") path = os.path.join(path, mlflow_model.saved_input_example_info[INPUT_EXAMPLE_PATH]) with open(path) as handle: return json.load(handle) def _load_serving_input_example(mlflow_model: Model, path: str): """ Load serving input exaple from a model directory. Returns None if there is no serving input example. Args: mlflow_model: Model metadata. path: Path to the model directory. Returns: Serving input example or None if the model has no serving input example. """ if mlflow_model.saved_input_example_info is None: return None serving_input_path = mlflow_model.saved_input_example_info.get(SERVING_INPUT_PATH) if serving_input_path is None: return None with open(os.path.join(path, serving_input_path)) as handle: return handle.read() def load_serving_example(model_uri_or_path: str): """ Load serving input example from a model directory or URI. Args: model_uri_or_path: Model URI or path to the `model` directory. e.g. models://<model_name>/<model_version> or /path/to/model """ serving_input_path = model_uri_or_path.rstrip("/") + "/" + SERVING_INPUT_FILENAME if os.path.exists(serving_input_path): with open(serving_input_path) as handle: return handle.read() else: with tempfile.TemporaryDirectory() as tmpdir: local_serving_input_path = _download_artifact_from_uri( serving_input_path, output_path=tmpdir ) with open(local_serving_input_path) as handle: return handle.read() def _read_example(mlflow_model: Model, path: str): """ Read example from a model directory. Returns None if there is no example metadata (i.e. the model was saved without example). Raises FileNotFoundError if there is model metadata but the example file is missing. Args: mlflow_model: Model metadata. path: Path to the model directory. Returns: Input example data or None if the model has no example. """ input_example = _get_mlflow_model_input_example_dict(mlflow_model, path) if input_example is None: return None example_type = mlflow_model.saved_input_example_info["type"] input_schema = mlflow_model.signature.inputs if mlflow_model.signature is not None else None if mlflow_model.saved_input_example_info.get(EXAMPLE_PARAMS_KEY, None): input_example = input_example[EXAMPLE_DATA_KEY] if example_type == "json_object": return input_example if example_type == "ndarray": return parse_inputs_data(input_example, schema=input_schema) if example_type in ["sparse_matrix_csc", "sparse_matrix_csr"]: return _read_sparse_matrix_from_json(input_example, example_type) if example_type == "dataframe": return dataframe_from_parsed_json(input_example, pandas_orient="split", schema=input_schema) raise MlflowException( "Malformed input example metadata. The 'type' field must be one of " "'dataframe', 'ndarray', 'sparse_matrix_csc', 'sparse_matrix_csr' or 'json_object'." ) def _read_example_params(mlflow_model: Model, path: str): """ Read params of input_example from a model directory. Returns None if there is no params in the input_example or the model was saved without example. """ if ( mlflow_model.saved_input_example_info is None or mlflow_model.saved_input_example_info.get(EXAMPLE_PARAMS_KEY, None) is None ): return None input_example_dict = _get_mlflow_model_input_example_dict(mlflow_model, path) return input_example_dict[EXAMPLE_PARAMS_KEY] def _read_tensor_input_from_json(path_or_data, schema=None): if isinstance(path_or_data, str) and os.path.exists(path_or_data): with open(path_or_data) as handle: inp_dict = json.load(handle) else: inp_dict = path_or_data return parse_tf_serving_input(inp_dict, schema) def _read_sparse_matrix_from_json(path_or_data, example_type): if isinstance(path_or_data, str) and os.path.exists(path_or_data): with open(path_or_data) as handle: matrix_data = json.load(handle) else: matrix_data = path_or_data data = matrix_data["data"] indices = matrix_data["indices"] indptr = matrix_data["indptr"] shape = tuple(matrix_data["shape"]) if example_type == "sparse_matrix_csc": return csc_matrix((data, indices, indptr), shape=shape) else: return csr_matrix((data, indices, indptr), shape=shape) def plot_lines(data_series, xlabel, ylabel, legend_loc=None, line_kwargs=None, title=None): import matplotlib.pyplot as plt fig, ax = plt.subplots() if line_kwargs is None: line_kwargs = {} for label, data_x, data_y in data_series: ax.plot(data_x, data_y, label=label, **line_kwargs) if legend_loc: ax.legend(loc=legend_loc) ax.set(xlabel=xlabel, ylabel=ylabel, title=title) return fig, ax def _enforce_tensor_spec( values: Union[np.ndarray, "csc_matrix", "csr_matrix"], tensor_spec: TensorSpec, ): """ Enforce the input tensor shape and type matches the provided tensor spec. """ expected_shape = tensor_spec.shape expected_type = tensor_spec.type actual_shape = values.shape actual_type = values.dtype if isinstance(values, np.ndarray) else values.data.dtype # This logic is for handling "ragged" arrays. The first check is for a standard numpy shape # representation of a ragged array. The second is for handling a more manual specification # of shape while support an input which is a ragged array. if len(expected_shape) == 1 and expected_shape[0] == -1 and expected_type == np.dtype("O"): # Sample spec: Tensor('object', (-1,)) # Will pass on any provided input return values if ( len(expected_shape) > 1 and -1 in expected_shape[1:] and len(actual_shape) == 1 and actual_type == np.dtype("O") ): # Sample spec: Tensor('float64', (-1, -1, -1, 3)) # Will pass on inputs which are ragged arrays: shape==(x,), dtype=='object' return values if len(expected_shape) != len(actual_shape): raise MlflowException( f"Shape of input {actual_shape} does not match expected shape {expected_shape}." ) for expected, actual in zip(expected_shape, actual_shape): if expected == -1: continue if expected != actual: raise MlflowException( f"Shape of input {actual_shape} does not match expected shape {expected_shape}." ) if clean_tensor_type(actual_type) != expected_type: raise MlflowException( f"dtype of input {actual_type} does not match expected dtype {expected_type}" ) return values def _enforce_mlflow_datatype(name, values: pd.Series, t: DataType): """ Enforce the input column type matches the declared in model input schema. The following type conversions are allowed: 1. object -> string 2. int -> long (upcast) 3. float -> double (upcast) 4. int -> double (safe conversion) 5. np.datetime64[x] -> datetime (any precision) 6. object -> datetime NB: pandas does not have native decimal data type, when user train and infer model from pyspark dataframe that contains decimal type, the schema will be treated as float64. 7. decimal -> double Any other type mismatch will raise error. """ if values.dtype == object and t not in (DataType.binary, DataType.string): values = values.infer_objects() if t == DataType.string and values.dtype == object: # NB: the object can contain any type and we currently cannot cast to pandas Strings # due to how None is cast return values # NB: Comparison of pandas and numpy data type fails when numpy data type is on the left hand # side of the comparison operator. It works, however, if pandas type is on the left hand side. # That is because pandas is aware of numpy. if t.to_pandas() == values.dtype or t.to_numpy() == values.dtype: # The types are already compatible => conversion is not necessary. return values if t == DataType.binary and values.dtype.kind == t.binary.to_numpy().kind: # NB: bytes in numpy have variable itemsize depending on the length of the longest # element in the array (column). Since MLflow binary type is length agnostic, we ignore # itemsize when matching binary columns. return values if t == DataType.datetime and values.dtype.kind == t.to_numpy().kind: # NB: datetime values have variable precision denoted by brackets, e.g. datetime64[ns] # denotes nanosecond precision. Since MLflow datetime type is precision agnostic, we # ignore precision when matching datetime columns. return values.astype(np.dtype("datetime64[ns]")) if t == DataType.datetime and (values.dtype == object or values.dtype == t.to_python()): # NB: Pyspark date columns get converted to object when converted to a pandas # DataFrame. To respect the original typing, we convert the column to datetime. try: return values.astype(np.dtype("datetime64[ns]"), errors="raise") except ValueError as e: raise MlflowException( f"Failed to convert column {name} from type {values.dtype} to {t}." ) from e if t == DataType.boolean and values.dtype == object: # Should not convert type otherwise it converts None to boolean False return values if t == DataType.double and values.dtype == decimal.Decimal: # NB: Pyspark Decimal column get converted to decimal.Decimal when converted to pandas # DataFrame. In order to support decimal data training from spark data frame, we add this # conversion even we might lose the precision. try: return pd.to_numeric(values, errors="raise") except ValueError: raise MlflowException( f"Failed to convert column {name} from type {values.dtype} to {t}." ) numpy_type = t.to_numpy() if values.dtype.kind == numpy_type.kind: is_upcast = values.dtype.itemsize <= numpy_type.itemsize elif values.dtype.kind == "u" and numpy_type.kind == "i": is_upcast = values.dtype.itemsize < numpy_type.itemsize elif values.dtype.kind in ("i", "u") and numpy_type == np.float64: # allow (u)int => double conversion is_upcast = values.dtype.itemsize <= 6 else: is_upcast = False if is_upcast: return values.astype(numpy_type, errors="raise") else: # NB: conversion between incompatible types (e.g. floats -> ints or # double -> float) are not allowed. While supported by pandas and numpy, # these conversions alter the values significantly. def all_ints(xs): return all(pd.isnull(x) or int(x) == x for x in xs) hint = "" if ( values.dtype == np.float64 and numpy_type.kind in ("i", "u") and values.hasnans and all_ints(values) ): hint = ( " Hint: the type mismatch is likely caused by missing values. " "Integer columns in python can not represent missing values and are therefore " "encoded as floats. The best way to avoid this problem is to infer the model " "schema based on a realistic data sample (training dataset) that includes missing " "values. Alternatively, you can declare integer columns as doubles (float64) " "whenever these columns may have missing values. See `Handling Integers With " "Missing Values <https://www.mlflow.org/docs/latest/models.html#" "handling-integers-with-missing-values>`_ for more details." ) raise MlflowException( f"Incompatible input types for column {name}. " f"Can not safely convert {values.dtype} to {numpy_type}.{hint}" ) def _enforce_unnamed_col_schema(pf_input: pd.DataFrame, input_schema: Schema): """Enforce the input columns conform to the model's column-based signature.""" input_names = pf_input.columns[: len(input_schema.inputs)] input_types = input_schema.input_types() new_pf_input = {} for i, x in enumerate(input_names): if isinstance(input_types[i], DataType): new_pf_input[x] = _enforce_mlflow_datatype(x, pf_input[x], input_types[i]) # If the input_type is objects/arrays/maps, we assume pf_input must be a pandas DataFrame. # Otherwise, the schema is not valid. else: new_pf_input[x] = pd.Series( [_enforce_type(obj, input_types[i]) for obj in pf_input[x]], name=x ) return pd.DataFrame(new_pf_input) def _enforce_named_col_schema(pf_input: pd.DataFrame, input_schema: Schema): """Enforce the input columns conform to the model's column-based signature.""" input_names = input_schema.input_names() input_dict = input_schema.input_dict() new_pf_input = {} for name in input_names: input_type = input_dict[name].type required = input_dict[name].required if name not in pf_input: if required: raise MlflowException( f"The input column '{name}' is required by the model " "signature but missing from the input data." ) else: continue if isinstance(input_type, DataType): new_pf_input[name] = _enforce_mlflow_datatype(name, pf_input[name], input_type) # If the input_type is objects/arrays/maps, we assume pf_input must be a pandas DataFrame. # Otherwise, the schema is not valid. else: new_pf_input[name] = pd.Series( [_enforce_type(obj, input_type, required) for obj in pf_input[name]], name=name ) return pd.DataFrame(new_pf_input) def _reshape_and_cast_pandas_column_values(name, pd_series, tensor_spec): if tensor_spec.shape[0] != -1 or -1 in tensor_spec.shape[1:]: raise MlflowException( "For pandas dataframe input, the first dimension of shape must be a variable " "dimension and other dimensions must be fixed, but in model signature the shape " f"of {'input ' + name if name else 'the unnamed input'} is {tensor_spec.shape}." ) if np.isscalar(pd_series[0]): for shape in [(-1,), (-1, 1)]: if tensor_spec.shape == shape: return _enforce_tensor_spec( np.array(pd_series, dtype=tensor_spec.type).reshape(shape), tensor_spec ) raise MlflowException( f"The input pandas dataframe column '{name}' contains scalar " "values, which requires the shape to be (-1,) or (-1, 1), but got tensor spec " f"shape of {tensor_spec.shape}.", error_code=INVALID_PARAMETER_VALUE, ) elif isinstance(pd_series[0], list) and np.isscalar(pd_series[0][0]): # If the pandas column contains list type values, # in this case, the shape and type information is lost, # so do not enforce the shape and type, instead, # reshape the array value list to the required shape, and cast value type to # required type. reshape_err_msg = ( f"The value in the Input DataFrame column '{name}' could not be converted to the " f"expected shape of: '{tensor_spec.shape}'. Ensure that each of the input list " "elements are of uniform length and that the data can be coerced to the tensor " f"type '{tensor_spec.type}'" ) try: flattened_numpy_arr = np.vstack(pd_series.tolist()) reshaped_numpy_arr = flattened_numpy_arr.reshape(tensor_spec.shape).astype( tensor_spec.type ) except ValueError: raise MlflowException(reshape_err_msg, error_code=INVALID_PARAMETER_VALUE) if len(reshaped_numpy_arr) != len(pd_series): raise MlflowException(reshape_err_msg, error_code=INVALID_PARAMETER_VALUE) return reshaped_numpy_arr elif isinstance(pd_series[0], np.ndarray): reshape_err_msg = ( f"The value in the Input DataFrame column '{name}' could not be converted to the " f"expected shape of: '{tensor_spec.shape}'. Ensure that each of the input numpy " "array elements are of uniform length and can be reshaped to above expected shape." ) try: # Because numpy array includes precise type information, so we don't convert type # here, so that in following schema validation we can have strict type check on # numpy array column. reshaped_numpy_arr = np.vstack(pd_series.tolist()).reshape(tensor_spec.shape) except ValueError: raise MlflowException(reshape_err_msg, error_code=INVALID_PARAMETER_VALUE) if len(reshaped_numpy_arr) != len(pd_series): raise MlflowException(reshape_err_msg, error_code=INVALID_PARAMETER_VALUE) return reshaped_numpy_arr else: raise MlflowException( "Because the model signature requires tensor spec input, the input " "pandas dataframe values should be either scalar value, python list " "containing scalar values or numpy array containing scalar values, " "other types are not supported.", error_code=INVALID_PARAMETER_VALUE, ) def _enforce_tensor_schema(pf_input: PyFuncInput, input_schema: Schema): """Enforce the input tensor(s) conforms to the model's tensor-based signature.""" def _is_sparse_matrix(x): if not HAS_SCIPY: # we can safely assume that it's not a sparse matrix if scipy is not installed return False return isinstance(x, (csr_matrix, csc_matrix)) if input_schema.has_input_names(): if isinstance(pf_input, dict): new_pf_input = {} for col_name, tensor_spec in zip(input_schema.input_names(), input_schema.inputs): if not isinstance(pf_input[col_name], np.ndarray): raise MlflowException( "This model contains a tensor-based model signature with input names," " which suggests a dictionary input mapping input name to a numpy" f" array, but a dict with value type {type(pf_input[col_name])} was found.", error_code=INVALID_PARAMETER_VALUE, ) new_pf_input[col_name] = _enforce_tensor_spec(pf_input[col_name], tensor_spec) elif isinstance(pf_input, pd.DataFrame): new_pf_input = {} for col_name, tensor_spec in zip(input_schema.input_names(), input_schema.inputs): pd_series = pf_input[col_name] new_pf_input[col_name] = _reshape_and_cast_pandas_column_values( col_name, pd_series, tensor_spec ) else: raise MlflowException( "This model contains a tensor-based model signature with input names, which" " suggests a dictionary input mapping input name to tensor, or a pandas" " DataFrame input containing columns mapping input name to flattened list value" f" from tensor, but an input of type {type(pf_input)} was found.", error_code=INVALID_PARAMETER_VALUE, ) else: tensor_spec = input_schema.inputs[0] if isinstance(pf_input, pd.DataFrame): num_input_columns = len(pf_input.columns) if pf_input.empty: raise MlflowException("Input DataFrame is empty.") elif num_input_columns == 1: new_pf_input = _reshape_and_cast_pandas_column_values( None, pf_input[pf_input.columns[0]], tensor_spec ) else: if tensor_spec.shape != (-1, num_input_columns): raise MlflowException( "This model contains a model signature with an unnamed input. Since the " "input data is a pandas DataFrame containing multiple columns, " "the input shape must be of the structure " "(-1, number_of_dataframe_columns). " f"Instead, the input DataFrame passed had {num_input_columns} columns and " f"an input shape of {tensor_spec.shape} with all values within the " "DataFrame of scalar type. Please adjust the passed in DataFrame to " "match the expected structure", error_code=INVALID_PARAMETER_VALUE, ) new_pf_input = _enforce_tensor_spec(pf_input.to_numpy(), tensor_spec) elif isinstance(pf_input, np.ndarray) or _is_sparse_matrix(pf_input): new_pf_input = _enforce_tensor_spec(pf_input, tensor_spec) else: raise MlflowException( "This model contains a tensor-based model signature with no input names," " which suggests a numpy array input or a pandas dataframe input with" f" proper column values, but an input of type {type(pf_input)} was found.", error_code=INVALID_PARAMETER_VALUE, ) return new_pf_input def _enforce_schema(pf_input: PyFuncInput, input_schema: Schema, flavor: Optional[str] = None): """ Enforces the provided input matches the model's input schema, For signatures with input names, we check there are no missing inputs and reorder the inputs to match the ordering declared in schema if necessary. Any extra columns are ignored. For column-based signatures, we make sure the types of the input match the type specified in the schema or if it can be safely converted to match the input schema. For Pyspark DataFrame inputs, MLflow casts a sample of the PySpark DataFrame into a Pandas DataFrame. MLflow will only enforce the schema on a subset of the data rows. For tensor-based signatures, we make sure the shape and type of the input matches the shape and type specified in model's input schema. """ def _is_scalar(x): return np.isscalar(x) or x is None original_pf_input = pf_input if isinstance(pf_input, pd.Series): pf_input = pd.DataFrame(pf_input) if not input_schema.is_tensor_spec(): # convert single DataType to pandas DataFrame if np.isscalar(pf_input): pf_input = pd.DataFrame([pf_input]) elif isinstance(pf_input, dict): # keys are column names if any( isinstance(col_spec.type, (Array, Object)) for col_spec in input_schema.inputs ) or all( _is_scalar(value) or (isinstance(value, list) and all(isinstance(item, str) for item in value)) for value in pf_input.values() ): pf_input = pd.DataFrame([pf_input]) else: try: # This check is specifically to handle the serving structural cast for # certain inputs for the transformers implementation. Due to the fact that # specific Pipeline types in transformers support passing input data # of the form Dict[str, str] in which the value is a scalar string, model # serving will cast this entry as a numpy array with shape () and size 1. # This is seen as a scalar input when attempting to create a Pandas # DataFrame from such a numpy structure and requires the array to be # encapsulated in a list in order to prevent a ValueError exception for # requiring an index if passing in all scalar values thrown by Pandas. if all( isinstance(value, np.ndarray) and value.dtype.type == np.str_ and value.size == 1 and value.shape == () for value in pf_input.values() ): pf_input = pd.DataFrame([pf_input]) elif any( isinstance(value, np.ndarray) and value.ndim > 1 for value in pf_input.values() ): # Pandas DataFrames can't be constructed with embedded multi-dimensional # numpy arrays. Accordingly, we convert any multi-dimensional numpy # arrays to lists before constructing a DataFrame. This is safe because # ColSpec model signatures do not support array columns, so subsequent # validation logic will result in a clear "incompatible input types" # exception. This is preferable to a pandas DataFrame construction error pf_input = pd.DataFrame( { key: ( value.tolist() if (isinstance(value, np.ndarray) and value.ndim > 1) else value ) for key, value in pf_input.items() } ) else: pf_input = pd.DataFrame(pf_input) except Exception as e: raise MlflowException( "This model contains a column-based signature, which suggests a DataFrame" " input. There was an error casting the input data to a DataFrame:" f" {e}" ) elif isinstance(pf_input, (list, np.ndarray, pd.Series)): pf_input = pd.DataFrame(pf_input) elif HAS_PYSPARK and isinstance(pf_input, SparkDataFrame): pf_input = pf_input.limit(10).toPandas() for field in original_pf_input.schema.fields: if isinstance(field.dataType, (StructType, ArrayType)): pf_input[field.name] = pf_input[field.name].apply( lambda row: convert_complex_types_pyspark_to_pandas(row, field.dataType) ) if not isinstance(pf_input, pd.DataFrame): raise MlflowException( f"Expected input to be DataFrame. Found: {type(pf_input).__name__}" ) if input_schema.has_input_names(): # make sure there are no missing columns input_names = input_schema.required_input_names() optional_names = input_schema.optional_input_names() expected_required_cols = set(input_names) actual_cols = set() optional_cols = set(optional_names) if len(expected_required_cols) == 1 and isinstance(pf_input, np.ndarray): # for schemas with a single column, match input with column pf_input = {input_names[0]: pf_input} actual_cols = expected_required_cols elif isinstance(pf_input, pd.DataFrame): actual_cols = set(pf_input.columns) elif isinstance(pf_input, dict): actual_cols = set(pf_input.keys()) missing_cols = expected_required_cols - actual_cols extra_cols = actual_cols - expected_required_cols - optional_cols # Preserve order from the original columns, since missing/extra columns are likely to # be in same order. missing_cols = [c for c in input_names if c in missing_cols] extra_cols = [c for c in actual_cols if c in extra_cols] if missing_cols: message = f"Model is missing inputs {missing_cols}." if extra_cols: message += f" Note that there were extra inputs: {extra_cols}" raise MlflowException(message) elif not input_schema.is_tensor_spec(): # The model signature does not specify column names => we can only verify column count. num_actual_columns = len(pf_input.columns) if num_actual_columns < len(input_schema.inputs): raise MlflowException( "Model inference is missing inputs. The model signature declares " "{} inputs but the provided value only has " "{} inputs. Note: the inputs were not named in the signature so we can " "only verify their count.".format(len(input_schema.inputs), num_actual_columns) ) if input_schema.is_tensor_spec(): return _enforce_tensor_schema(pf_input, input_schema) elif HAS_PYSPARK and isinstance(original_pf_input, SparkDataFrame): return _enforce_pyspark_dataframe_schema( original_pf_input, pf_input, input_schema, flavor=flavor ) else: # pf_input must be a pandas Dataframe at this point return ( _enforce_named_col_schema(pf_input, input_schema) if input_schema.has_input_names() else _enforce_unnamed_col_schema(pf_input, input_schema) ) def _enforce_pyspark_dataframe_schema( original_pf_input: SparkDataFrame, pf_input_as_pandas, input_schema: Schema, flavor: Optional[str] = None, ): """ Enforce that the input PySpark DataFrame conforms to the model's input schema. This function creates a new DataFrame that only includes the columns from the original DataFrame that are declared in the model's input schema. Any extra columns in the original DataFrame are dropped.Note that this function does not modify the original DataFrame. Args: original_pf_input: Original input PySpark DataFrame. pf_input_as_pandas: Input DataFrame converted to pandas. input_schema: Expected schema of the input DataFrame. flavor: Optional model flavor. If specified, it is used to handle specific behaviors for different model flavors. Currently, only the '_FEATURE_STORE_FLAVOR' is handled specially. Returns: New PySpark DataFrame that conforms to the model's input schema. """ if not HAS_PYSPARK: raise MlflowException("PySpark is not installed. Cannot handle a PySpark DataFrame.") new_pf_input = original_pf_input.alias("pf_input_copy") if input_schema.has_input_names(): _enforce_named_col_schema(pf_input_as_pandas, input_schema) input_names = input_schema.input_names() else: _enforce_unnamed_col_schema(pf_input_as_pandas, input_schema) input_names = pf_input_as_pandas.columns[: len(input_schema.inputs)] columns_to_drop = [] columns_not_dropped_for_feature_store_model = [] for col, dtype in new_pf_input.dtypes: if col not in input_names: # to support backwards compatability with feature store models if any(x in dtype for x in ["array", "map", "struct"]): if flavor == _FEATURE_STORE_FLAVOR: columns_not_dropped_for_feature_store_model.append(col) continue columns_to_drop.append(col) if columns_not_dropped_for_feature_store_model: _logger.warning( "The following columns are not in the model signature but " "are not dropped for feature store model: %s", ", ".join(columns_not_dropped_for_feature_store_model), ) return new_pf_input.drop(*columns_to_drop) def _enforce_datatype(data: Any, dtype: DataType, required=True): if not required and data is None: return None if not isinstance(dtype, DataType): raise MlflowException(f"Expected dtype to be DataType, got {type(dtype).__name__}") if not np.isscalar(data): raise MlflowException(f"Expected data to be scalar, got {type(data).__name__}") # Reuse logic in _enforce_mlflow_datatype for type conversion pd_series = pd.Series(data) try: pd_series = _enforce_mlflow_datatype("", pd_series, dtype) except MlflowException: raise MlflowException( f"Failed to enforce schema of data `{data}` with dtype `{dtype.name}`" ) return pd_series[0] def _enforce_array(data: Any, arr: Array, required=True): if not required and data is None: return None if not isinstance(data, (list, np.ndarray)): raise MlflowException(f"Expected data to be list or numpy array, got {type(data).__name__}") data_enforced = [_enforce_type(x, arr.dtype) for x in data] # Keep input data type if isinstance(data, np.ndarray): data_enforced = np.array(data_enforced) return data_enforced def _enforce_property(data: Any, property: Property): return _enforce_type(data, property.dtype) def _enforce_object(data: Dict[str, Any], obj: Object, required=True): if not required and data is None: return None if HAS_PYSPARK and isinstance(data, Row): data = data.asDict(True) if not isinstance(data, dict): raise MlflowException( f"Failed to enforce schema of '{data}' with type '{obj}'. " f"Expected data to be dictionary, got {type(data).__name__}" ) if not isinstance(obj, Object): raise MlflowException( f"Failed to enforce schema of '{data}' with type '{obj}'. " f"Expected obj to be Object, got {type(obj).__name__}" ) properties = {prop.name: prop for prop in obj.properties} required_props = {k for k, prop in properties.items() if prop.required} missing_props = required_props - set(data.keys()) if missing_props: raise MlflowException(f"Missing required properties: {missing_props}") if invalid_props := data.keys() - properties.keys(): raise MlflowException( f"Invalid properties not defined in the schema found: {invalid_props}" ) for k, v in data.items(): try: data[k] = _enforce_property(v, properties[k]) except MlflowException as e: raise MlflowException( f"Failed to enforce schema for key `{k}`. " f"Expected type {properties[k].to_dict()[k]['type']}, " f"received type {type(v).__name__}" ) from e return data def _enforce_map(data: Any, map_type: Map, required=True): if not required and data is None: return None if not isinstance(data, dict): raise MlflowException(f"Expected data to be a dict, got {type(data).__name__}") if not all(isinstance(k, str) for k in data): raise MlflowException("Expected all keys in the map type data are string type.") return {k: _enforce_type(v, map_type.value_type) for k, v in data.items()} def _enforce_type(data: Any, data_type: Union[DataType, Array, Object, Map], required=True): if isinstance(data_type, DataType): return _enforce_datatype(data, data_type, required=required) if isinstance(data_type, Array): return _enforce_array(data, data_type, required=required) if isinstance(data_type, Object): return _enforce_object(data, data_type, required=required) if isinstance(data_type, Map): return _enforce_map(data, data_type, required=required) raise MlflowException(f"Invalid data type: {data_type!r}")
[docs]def validate_schema(data: PyFuncInput, expected_schema: Schema) -> None: """ Validate that the input data has the expected schema. Args: data: Input data to be validated. Supported types are: - pandas.DataFrame - pandas.Series - numpy.ndarray - scipy.sparse.csc_matrix - scipy.sparse.csr_matrix - List[Any] - Dict[str, Any] - str expected_schema: Expected Schema of the input data. Raises: mlflow.exceptions.MlflowException: when the input data does not match the schema. .. code-block:: python :caption: Example usage of validate_schema import mlflow.models # Suppose you've already got a model_uri model_info = mlflow.models.get_model_info(model_uri) # Get model signature directly model_signature = model_info.signature # validate schema mlflow.models.validate_schema(input_data, model_signature.inputs) """ _enforce_schema(data, expected_schema)
[docs]@experimental def add_libraries_to_model(model_uri, run_id=None, registered_model_name=None): """ Given a registered model_uri (e.g. models:/<model_name>/<model_version>), this utility re-logs the model along with all the required model libraries back to the Model Registry. The required model libraries are stored along with the model as model artifacts. In addition, supporting files to the model (e.g. conda.yaml, requirements.txt) are modified to use the added libraries. By default, this utility creates a new model version under the same registered model specified by ``model_uri``. This behavior can be overridden by specifying the ``registered_model_name`` argument. Args: model_uri: A registered model uri in the Model Registry of the form models:/<model_name>/<model_version/stage/latest> run_id: The ID of the run to which the model with libraries is logged. If None, the model with libraries is logged to the source run corresponding to model version specified by ``model_uri``; if the model version does not have a source run, a new run created. registered_model_name: The new model version (model with its libraries) is registered under the inputted registered_model_name. If None, a new version is logged to the existing model in the Model Registry. .. note:: This utility only operates on a model that has been registered to the Model Registry. .. note:: The libraries are only compatible with the platform on which they are added. Cross platform libraries are not supported. .. code-block:: python :caption: Example # Create and log a model to the Model Registry import pandas as pd from sklearn import datasets from sklearn.ensemble import RandomForestClassifier import mlflow import mlflow.sklearn from mlflow.models import infer_signature with mlflow.start_run(): iris = datasets.load_iris() iris_train = pd.DataFrame(iris.data, columns=iris.feature_names) clf = RandomForestClassifier(max_depth=7, random_state=0) clf.fit(iris_train, iris.target) signature = infer_signature(iris_train, clf.predict(iris_train)) mlflow.sklearn.log_model( clf, "iris_rf", signature=signature, registered_model_name="model-with-libs" ) # model uri for the above model model_uri = "models:/model-with-libs/1" # Import utility from mlflow.models.utils import add_libraries_to_model # Log libraries to the original run of the model add_libraries_to_model(model_uri) # Log libraries to some run_id existing_run_id = "21df94e6bdef4631a9d9cb56f211767f" add_libraries_to_model(model_uri, run_id=existing_run_id) # Log libraries to a new run with mlflow.start_run(): add_libraries_to_model(model_uri) # Log libraries to a new registered model named 'new-model' with mlflow.start_run(): add_libraries_to_model(model_uri, registered_model_name="new-model") """ import mlflow from mlflow.models.wheeled_model import WheeledModel if mlflow.active_run() is None: if run_id is None: run_id = get_model_version_from_model_uri(model_uri).run_id with mlflow.start_run(run_id): return WheeledModel.log_model(model_uri, registered_model_name) else: return WheeledModel.log_model(model_uri, registered_model_name)
def get_model_version_from_model_uri(model_uri): """ Helper function to fetch a model version from a model uri of the form models:/<model_name>/<model_version/stage/latest>. """ import mlflow from mlflow import MlflowClient databricks_profile_uri = ( get_databricks_profile_uri_from_artifact_uri(model_uri) or mlflow.get_registry_uri() ) client = MlflowClient(registry_uri=databricks_profile_uri) (name, version) = get_model_name_and_version(client, model_uri) return client.get_model_version(name, version) def _enforce_params_schema(params: Optional[Dict[str, Any]], schema: Optional[ParamSchema]): if schema is None: if params in [None, {}]: return params params_info = ( f"Ignoring provided params: {list(params.keys())}" if isinstance(params, dict) else "Ignoring invalid params (not a dictionary)." ) _logger.warning( "`params` can only be specified at inference time if the model signature " f"defines a params schema. This model does not define a params schema. {params_info}", ) return {} params = {} if params is None else params if not isinstance(params, dict): raise MlflowException.invalid_parameter_value( f"Parameters must be a dictionary. Got type '{type(params).__name__}'.", ) if not isinstance(schema, ParamSchema): raise MlflowException.invalid_parameter_value( "Parameters schema must be an instance of ParamSchema. " f"Got type '{type(schema).__name__}'.", ) if any(not isinstance(k, str) for k in params.keys()): _logger.warning( "Keys in parameters should be of type `str`, but received non-string keys." "Converting all keys to string..." ) params = {str(k): v for k, v in params.items()} allowed_keys = {param.name for param in schema.params} ignored_keys = set(params) - allowed_keys if ignored_keys: _logger.warning( f"Unrecognized params {list(ignored_keys)} are ignored for inference. " f"Supported params are: {allowed_keys}. " "To enable them, please add corresponding schema in ModelSignature." ) params = {k: params[k] for k in params if k in allowed_keys} invalid_params = set() for param_spec in schema.params: if param_spec.name in params: try: params[param_spec.name] = ParamSpec.validate_param_spec( params[param_spec.name], param_spec ) except MlflowException as e: invalid_params.add((param_spec.name, e.message)) else: params[param_spec.name] = param_spec.default if invalid_params: raise MlflowException.invalid_parameter_value( f"Invalid parameters found: {invalid_params!r}", ) return params def convert_complex_types_pyspark_to_pandas(value, dataType): # This function is needed because the default `asDict` function in PySpark # converts the data to Python types, which is not compatible with the schema enforcement. type_mapping = { IntegerType: lambda v: np.int32(v), ShortType: lambda v: np.int16(v), FloatType: lambda v: np.float32(v), DateType: lambda v: v.strftime("%Y-%m-%d"), TimestampType: lambda v: v.strftime("%Y-%m-%d %H:%M:%S.%f"), BinaryType: lambda v: np.bytes_(v), } if value is None: return None if isinstance(dataType, StructType): return { field.name: convert_complex_types_pyspark_to_pandas(value[field.name], field.dataType) for field in dataType.fields } elif isinstance(dataType, ArrayType): return [ convert_complex_types_pyspark_to_pandas(elem, dataType.elementType) for elem in value ] converter = type_mapping.get(type(dataType)) if converter: return converter(value) return value def _is_in_comment(line, start): """ Check if the code at the index "start" of the line is in a comment. Limitations: This function does not handle multi-line comments, and the # symbol could be in a string, or otherwise not indicate a comment. """ return "#" in line[:start] def _is_in_string_only(line, search_string): """ Check is the search_string Limitations: This function does not handle multi-line strings. """ # Regex for matching double quotes and everything inside double_quotes_regex = r"\"(\\.|[^\"])*\"" # Regex for matching single quotes and everything inside single_quotes_regex = r"\'(\\.|[^\'])*\'" # Regex for matching search_string exactly search_string_regex = rf"({re.escape(search_string)})" # Concatenate the patterns using the OR operator '|' # This will matches left to right - on quotes first, search_string last pattern = double_quotes_regex + r"|" + single_quotes_regex + r"|" + search_string_regex # Iterate through all matches in the line for match in re.finditer(pattern, line): # If the regex matched on the search_string, we know that it did not match in quotes since # that is the order. So we know that the search_string exists outside of quotes # (at least once). if match.group() == search_string: return False return True def _validate_model_code_from_notebook(code): """ Validate there isn't any code that would work in a notebook but not as exported Python file. For now, this checks for dbutils and magic commands. """ output_code_list = [] for line in code.splitlines(): for match in re.finditer(r"\bdbutils\b", line): start = match.start() if not _is_in_comment(line, start) and not _is_in_string_only(line, "dbutils"): _logger.warning( "The model file uses 'dbutils' commands which are not supported. To ensure " "your code functions correctly, make sure that it does not rely on these " "dbutils commands for correctness." ) # Prefix any line containing MAGIC commands with a comment. When there is better support # for the Databricks workspace export API, we can get rid of this. if line.startswith("%"): output_code_list.append("# MAGIC " + line) else: output_code_list.append(line) output_code = "\n".join(output_code_list) magic_regex = r"^# MAGIC %((?!pip)\S+).*" if re.search(magic_regex, output_code, re.MULTILINE): _logger.warning( "The model file uses magic commands which have been commented out. To ensure your code " "functions correctly, make sure that it does not rely on these magic commands for " "correctness." ) return output_code.encode("utf-8") def _convert_llm_ndarray_to_list(data): """ Convert numpy array in the input data to list, because numpy array is not json serializable. """ if isinstance(data, np.ndarray): return data.tolist() if isinstance(data, list): return [_convert_llm_ndarray_to_list(d) for d in data] if isinstance(data, dict): return {k: _convert_llm_ndarray_to_list(v) for k, v in data.items()} return data def _convert_llm_input_data(data: Any) -> Union[List, Dict]: """ Convert input data to a format that can be passed to the model with GenAI flavors such as LangChain and LLamaIndex. Args data: Input data to be converted. We assume it is a single request payload, but it can be in any format such as a single scalar value, a dictionary, list (with one element), Pandas DataFrame, etc. """ # This handles pyfunc / spark_udf inputs with model signature. Schema enforcement convert # the input data to pandas DataFrame, so we convert it back. if isinstance(data, pd.DataFrame): # if the data only contains a single key as 0, we assume the input # is either a string or list of strings if list(data.columns) == [0]: data = data.to_dict("list")[0] else: data = data.to_dict(orient="records") return _convert_llm_ndarray_to_list(data) def _validate_and_get_model_code_path(model_code_path: str, temp_dir: str) -> str: """ Validate model code path exists. Creates a temp file in temp_dir and validate its contents if it's a notebook. Returns either `model_code_path` or a temp file path with the contents of the notebook. """ # If the path is not a absolute path then convert it model_code_path = os.path.abspath(model_code_path) if not os.path.exists(model_code_path): raise MlflowException.invalid_parameter_value( f"The provided model path '{model_code_path}' is not a valid Python file path or a " "Databricks Notebook file path containing the code for defining the chain instance. " "Ensure the file path is valid and try again." ) try: with open(model_code_path) as _: return model_code_path except Exception: try: from databricks.sdk import WorkspaceClient from databricks.sdk.service.workspace import ExportFormat w = WorkspaceClient() response = w.workspace.export(path=model_code_path, format=ExportFormat.SOURCE) decoded_content = base64.b64decode(response.content) except Exception: raise MlflowException.invalid_parameter_value( f"The provided model path '{model_code_path}' is not a valid Python file path or a " "Databricks Notebook file path containing the code for defining the chain " "instance. Ensure the file path is valid and try again." ) _validate_model_code_from_notebook(decoded_content.decode("utf-8")) path = os.path.join(temp_dir, "model.py") with open(path, "wb") as f: f.write(decoded_content) return path @contextmanager def _config_context(config: Optional[Union[str, Dict[str, Any]]] = None): # Check if config_path is None and set it to "" so when loading the model # the config_path is set to "" so the ModelConfig can correctly check if the # config is set or not if config is None: config = "" _set_model_config(config) try: yield finally: _set_model_config(None) class MockDbutils: def __init__(self, real_dbutils=None): self.real_dbutils = real_dbutils def __getattr__(self, name): try: if self.real_dbutils: return getattr(self.real_dbutils, name) except AttributeError: pass return MockDbutils() def __call__(self, *args, **kwargs): pass @contextmanager def _mock_dbutils(globals_dict): module_name = "dbutils" original_module = sys.modules.get(module_name) sys.modules[module_name] = MockDbutils(original_module) # Inject module directly into the global namespace in case it is referenced without an import original_global = globals_dict.get(module_name) globals_dict[module_name] = MockDbutils(original_module) try: yield finally: if original_module is not None: sys.modules[module_name] = original_module else: del sys.modules[module_name] if original_global is not None: globals_dict[module_name] = original_global else: del globals_dict[module_name] # Python's module caching mechanism prevents the re-importation of previously loaded modules by # default. Once a module is imported, it's added to `sys.modules`, and subsequent import attempts # retrieve the cached module rather than re-importing it. # Here, we want to import the `code path` module multiple times during a single runtime session. # This function addresses this by dynamically importing the `code path` module under a unique, # dynamically generated module name. This bypasses the caching mechanism, as each import is # considered a separate module by the Python interpreter. def _load_model_code_path(code_path: str, config: Optional[Union[str, Dict[str, Any]]]): with _config_context(config): try: new_module_name = f"code_model_{uuid.uuid4().hex}" spec = importlib.util.spec_from_file_location(new_module_name, code_path) module = importlib.util.module_from_spec(spec) sys.modules[new_module_name] = module # Since dbutils will only work in databricks environment, we need to mock it with _mock_dbutils(module.__dict__): spec.loader.exec_module(module) except ImportError as e: raise MlflowException( f"Failed to import code model from {code_path}. Error: {e!s}" ) from e except Exception as e: raise MlflowException( f"Failed to run user code from {code_path}. " f"Error: {e!s}." "Review the stack trace for more information." ) from e if mlflow.models.model.__mlflow_model__ is None: raise MlflowException( "If the model is logged as code, ensure the model is set using " "mlflow.models.set_model() within the code file code file." ) return mlflow.models.model.__mlflow_model__ def _flatten_nested_params( d: Dict[str, Any], parent_key: str = "", sep: str = "/" ) -> Dict[str, str]: items: Dict[str, Any] = {} for k, v in d.items(): new_key = f"{parent_key}{sep}{k}" if parent_key else k if isinstance(v, dict): items.update(_flatten_nested_params(v, new_key, sep=sep)) else: items[new_key] = v return items # NB: this function should always be kept in sync with the serving # process in scoring_server invocations.
[docs]@experimental def validate_serving_input(model_uri: str, serving_input: Union[str, Dict[str, Any]]): """ Helper function to validate the model can be served and provided input is valid prior to serving the model. Args: model_uri: URI of the model to be served. serving_input: Input data to be validated. Should be a dictionary or a JSON string. Returns: The prediction result from the model. """ from mlflow.pyfunc.scoring_server import _parse_json_data # sklearn model might not have python_function flavor if it # doesn't define a predict function. In such case the model # can not be served anyways with tempfile.TemporaryDirectory() as temp_output_dir: pyfunc_model = mlflow.pyfunc.load_model(model_uri, dst_path=temp_output_dir) parsed_input = _parse_json_data( serving_input, pyfunc_model.metadata, pyfunc_model.metadata.get_input_schema(), ) return pyfunc_model.predict(parsed_input.data, params=parsed_input.params)