from functools import partial
from mlflow.environment_variables import MLFLOW_REGISTRY_URI
from mlflow.store.db.db_types import DATABASE_ENGINES
from mlflow.store.model_registry.databricks_workspace_model_registry_rest_store import (
DatabricksWorkspaceModelRegistryRestStore,
)
from mlflow.store.model_registry.file_store import FileStore
from mlflow.store.model_registry.rest_store import RestStore
from mlflow.tracking._model_registry.registry import ModelRegistryStoreRegistry
from mlflow.tracking._tracking_service.utils import (
_resolve_tracking_uri,
get_tracking_uri,
)
from mlflow.utils._spark_utils import _get_active_spark_session
from mlflow.utils.credentials import get_default_host_creds
from mlflow.utils.databricks_utils import (
get_databricks_host_creds,
is_in_databricks_serverless,
warn_on_deprecated_cross_workspace_registry_uri,
)
from mlflow.utils.uri import _DATABRICKS_UNITY_CATALOG_SCHEME
# NOTE: in contrast to tracking, we do not support the following ways to specify
# the model registry URI:
# - via environment variables like MLFLOW_TRACKING_URI, MLFLOW_TRACKING_USERNAME, ...
# We do support specifying it
# - via the ``model_registry_uri`` parameter when creating an ``MlflowClient`` or
# ``ModelRegistryClient``.
# - via a utility method ``mlflow.set_registry_uri``
# - by not specifying anything: in this case we assume the model registry store URI is
# the same as the tracking store URI. This means Tracking and Model Registry are
# backed by the same backend DB/Rest server. However, note that we access them via
# different ``Store`` classes (e.g. ``mlflow.store.tracking.SQLAlchemyStore`` &
# ``mlflow.store.model_registry.SQLAlchemyStore``).
# This means the following combinations are not supported:
# - Tracking RestStore & Model Registry RestStore that use different credentials.
_registry_uri = None
[docs]def set_registry_uri(uri: str) -> None:
"""Set the registry server URI. This method is especially useful if you have a registry server
that's different from the tracking server.
Args:
uri: An empty string, or a local file path, prefixed with ``file:/``. Data is stored
locally at the provided file (or ``./mlruns`` if empty). An HTTP URI like
``https://my-tracking-server:5000``. A Databricks workspace, provided as the string
"databricks" or, to use a Databricks CLI
`profile <https://github.com/databricks/databricks-cli#installation>`_,
"databricks://<profileName>".
.. code-block:: python
:caption: Example
import mflow
# Set model registry uri, fetch the set uri, and compare
# it with the tracking uri. They should be different
mlflow.set_registry_uri("sqlite:////tmp/registry.db")
mr_uri = mlflow.get_registry_uri()
print(f"Current registry uri: {mr_uri}")
tracking_uri = mlflow.get_tracking_uri()
print(f"Current tracking uri: {tracking_uri}")
# They should be different
assert tracking_uri != mr_uri
.. code-block:: text
:caption: Output
Current registry uri: sqlite:////tmp/registry.db
Current tracking uri: file:///.../mlruns
"""
global _registry_uri
_registry_uri = uri
def _get_registry_uri_from_spark_session():
session = _get_active_spark_session()
if session is None:
return None
if is_in_databricks_serverless():
# Connected to Serverless
return "databricks-uc"
return session.conf.get("spark.mlflow.modelRegistryUri", None)
def _get_registry_uri_from_context():
global _registry_uri
if _registry_uri is not None:
return _registry_uri
elif (uri := MLFLOW_REGISTRY_URI.get()) or (uri := _get_registry_uri_from_spark_session()):
return uri
return _registry_uri
[docs]def get_registry_uri() -> str:
"""Get the current registry URI. If none has been specified, defaults to the tracking URI.
Returns:
The registry URI.
.. code-block:: python
# Get the current model registry uri
mr_uri = mlflow.get_registry_uri()
print(f"Current model registry uri: {mr_uri}")
# Get the current tracking uri
tracking_uri = mlflow.get_tracking_uri()
print(f"Current tracking uri: {tracking_uri}")
# They should be the same
assert mr_uri == tracking_uri
.. code-block:: text
Current model registry uri: file:///.../mlruns
Current tracking uri: file:///.../mlruns
"""
return _get_registry_uri_from_context() or get_tracking_uri()
def _resolve_registry_uri(registry_uri=None, tracking_uri=None):
return registry_uri or _get_registry_uri_from_context() or _resolve_tracking_uri(tracking_uri)
def _get_sqlalchemy_store(store_uri):
from mlflow.store.model_registry.sqlalchemy_store import SqlAlchemyStore
return SqlAlchemyStore(store_uri)
def _get_rest_store(store_uri, **_):
return RestStore(partial(get_default_host_creds, store_uri))
def _get_databricks_rest_store(store_uri, **_):
warn_on_deprecated_cross_workspace_registry_uri(registry_uri=store_uri)
return DatabricksWorkspaceModelRegistryRestStore(partial(get_databricks_host_creds, store_uri))
# We define the global variable as `None` so that instantiating the store does not lead to circular
# dependency issues.
_model_registry_store_registry = None
def _get_file_store(store_uri, **_):
return FileStore(store_uri)
def _get_store_registry():
global _model_registry_store_registry
from mlflow.store._unity_catalog.registry.rest_store import UcModelRegistryStore
if _model_registry_store_registry is not None:
return _model_registry_store_registry
_model_registry_store_registry = ModelRegistryStoreRegistry()
_model_registry_store_registry.register("databricks", _get_databricks_rest_store)
# Register a placeholder function that raises if users pass a registry URI with scheme
# "databricks-uc"
_model_registry_store_registry.register(_DATABRICKS_UNITY_CATALOG_SCHEME, UcModelRegistryStore)
for scheme in ["http", "https"]:
_model_registry_store_registry.register(scheme, _get_rest_store)
for scheme in DATABASE_ENGINES:
_model_registry_store_registry.register(scheme, _get_sqlalchemy_store)
for scheme in ["", "file"]:
_model_registry_store_registry.register(scheme, _get_file_store)
_model_registry_store_registry.register_entrypoints()
return _model_registry_store_registry
def _get_store(store_uri=None, tracking_uri=None):
return _get_store_registry().get_store(store_uri, tracking_uri)