"""
Internal package providing a Python CRUD interface to MLflow experiments, runs, registered models,
and model versions. This is a lower level API than the :py:mod:`mlflow.tracking.fluent` module,
and is exposed in the :py:mod:`mlflow.tracking` module.
"""
import contextlib
import json
import logging
import os
import posixpath
import re
import sys
import tempfile
import urllib
import uuid
import warnings
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
import yaml
import mlflow
from mlflow.entities import (
DatasetInput,
Experiment,
FileInfo,
Metric,
Param,
Run,
RunTag,
Span,
SpanStatus,
SpanType,
Trace,
TraceData,
TraceInfo,
ViewType,
)
from mlflow.entities.model_registry import ModelVersion, RegisteredModel
from mlflow.entities.model_registry.model_version_stages import ALL_STAGES
from mlflow.entities.span import NO_OP_SPAN_REQUEST_ID, NoOpSpan, create_mlflow_span
from mlflow.entities.trace_status import TraceStatus
from mlflow.environment_variables import MLFLOW_ENABLE_ASYNC_LOGGING
from mlflow.exceptions import MlflowException
from mlflow.protos.databricks_pb2 import (
BAD_REQUEST,
FEATURE_DISABLED,
INVALID_PARAMETER_VALUE,
RESOURCE_DOES_NOT_EXIST,
)
from mlflow.store.artifact.utils.models import (
get_model_name_and_version,
)
from mlflow.store.entities.paged_list import PagedList
from mlflow.store.model_registry import (
SEARCH_MODEL_VERSION_MAX_RESULTS_DEFAULT,
SEARCH_REGISTERED_MODEL_MAX_RESULTS_DEFAULT,
)
from mlflow.store.tracking import SEARCH_MAX_RESULTS_DEFAULT, SEARCH_TRACES_DEFAULT_MAX_RESULTS
from mlflow.tracing.constant import (
TRACE_REQUEST_ID_PREFIX,
SpanAttributeKey,
TraceTagKey,
)
from mlflow.tracing.display import get_display_handler
from mlflow.tracing.trace_manager import InMemoryTraceManager
from mlflow.tracing.utils import exclude_immutable_tags, get_otel_attribute
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking._model_registry import utils as registry_utils
from mlflow.tracking._model_registry.client import ModelRegistryClient
from mlflow.tracking._tracking_service import utils
from mlflow.tracking._tracking_service.client import TrackingServiceClient
from mlflow.tracking.artifact_utils import _upload_artifacts_to_databricks
from mlflow.tracking.multimedia import Image, compress_image_size, convert_to_pil_image
from mlflow.tracking.registry import UnsupportedModelRegistryStoreURIException
from mlflow.utils.annotations import deprecated, experimental
from mlflow.utils.async_logging.run_operations import RunOperations
from mlflow.utils.databricks_utils import (
get_databricks_run_url,
)
from mlflow.utils.logging_utils import eprint
from mlflow.utils.mlflow_tags import (
MLFLOW_LOGGED_ARTIFACTS,
MLFLOW_LOGGED_IMAGES,
MLFLOW_PARENT_RUN_ID,
)
from mlflow.utils.time import get_current_time_millis
from mlflow.utils.uri import is_databricks_unity_catalog_uri, is_databricks_uri
from mlflow.utils.validation import (
_validate_model_alias_name,
_validate_model_name,
_validate_model_version,
_validate_model_version_or_stage_exists,
)
if TYPE_CHECKING:
import matplotlib
import numpy
import pandas
import PIL
import plotly
_logger = logging.getLogger(__name__)
_STAGES_DEPRECATION_WARNING = (
"Model registry stages will be removed in a future major release. To learn more about the "
"deprecation of model registry stages, see our migration guide here: https://mlflow.org/docs/"
"latest/model-registry.html#migrating-from-stages"
)
[docs]class MlflowClient:
"""
Client of an MLflow Tracking Server that creates and manages experiments and runs, and of an
MLflow Registry Server that creates and manages registered models and model versions. It's a
thin wrapper around TrackingServiceClient and RegistryClient so there is a unified API but we
can keep the implementation of the tracking and registry clients independent from each other.
"""
def __init__(self, tracking_uri: Optional[str] = None, registry_uri: Optional[str] = None):
"""
Args:
tracking_uri: Address of local or remote tracking server. If not provided, defaults
to the service set by ``mlflow.tracking.set_tracking_uri``. See
`Where Runs Get Recorded <../tracking.html#where-runs-get-recorded>`_
for more info.
registry_uri: Address of local or remote model registry server. If not provided,
defaults to the service set by ``mlflow.tracking.set_registry_uri``. If
no such service was set, defaults to the tracking uri of the client.
"""
final_tracking_uri = utils._resolve_tracking_uri(tracking_uri)
self._registry_uri = registry_utils._resolve_registry_uri(registry_uri, tracking_uri)
self._tracking_client = TrackingServiceClient(final_tracking_uri)
# `MlflowClient` also references a `ModelRegistryClient` instance that is provided by the
# `MlflowClient._get_registry_client()` method. This `ModelRegistryClient` is not explicitly
# defined as an instance variable in the `MlflowClient` constructor; an instance variable
# is assigned lazily by `MlflowClient._get_registry_client()` and should not be referenced
# outside of the `MlflowClient._get_registry_client()` method
@property
def tracking_uri(self):
return self._tracking_client.tracking_uri
def _get_registry_client(self):
"""Attempts to create a ModelRegistryClient if one does not already exist.
Raises:
MlflowException: If the ModelRegistryClient cannot be created. This may occur, for
example, when the registry URI refers to an unsupported store type (e.g., the
FileStore).
Returns:
A ModelRegistryClient instance.
"""
# Attempt to fetch a `ModelRegistryClient` that is lazily instantiated and defined as
# an instance variable on this `MlflowClient` instance. Because the instance variable
# is undefined until the first invocation of _get_registry_client(), the `getattr()`
# function is used to safely fetch the variable (if it is defined) or a NoneType
# (if it is not defined)
registry_client_attr = "_registry_client_lazy"
registry_client = getattr(self, registry_client_attr, None)
if registry_client is None:
try:
registry_client = ModelRegistryClient(self._registry_uri, self.tracking_uri)
# Define an instance variable on this `MlflowClient` instance to reference the
# `ModelRegistryClient` that was just constructed. `setattr()` is used to ensure
# that the variable name is consistent with the variable name specified in the
# preceding call to `getattr()`
setattr(self, registry_client_attr, registry_client)
except UnsupportedModelRegistryStoreURIException as exc:
raise MlflowException(
"Model Registry features are not supported by the store with URI:"
f" '{self._registry_uri}'. Stores with the following URI schemes are supported:"
f" {exc.supported_uri_schemes}.",
FEATURE_DISABLED,
)
return registry_client
# Tracking API
[docs] def get_run(self, run_id: str) -> Run:
"""
Fetch the run from backend store. The resulting :py:class:`Run <mlflow.entities.Run>`
contains a collection of run metadata -- :py:class:`RunInfo <mlflow.entities.RunInfo>`,
as well as a collection of run parameters, tags, and metrics --
:py:class:`RunData <mlflow.entities.RunData>`. It also contains a collection of run
inputs (experimental), including information about datasets used by the run --
:py:class:`RunInputs <mlflow.entities.RunInputs>`. In the case where multiple metrics with
the same key are logged for the run, the :py:class:`RunData <mlflow.entities.RunData>`
contains the most recently logged value at the largest step for each metric.
Args:
run_id: Unique identifier for the run.
Returns:
A single :py:class:`mlflow.entities.Run` object, if the run exists. Otherwise,
raises an exception.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
with mlflow.start_run() as run:
mlflow.log_param("p", 0)
# The run has finished since we have exited the with block
# Fetch the run
client = MlflowClient()
run = client.get_run(run.info.run_id)
print(f"run_id: {run.info.run_id}")
print(f"params: {run.data.params}")
print(f"status: {run.info.status}")
.. code-block:: text
:caption: Output
run_id: e36b42c587a1413ead7c3b6764120618
params: {'p': '0'}
status: FINISHED
"""
return self._tracking_client.get_run(run_id)
[docs] def get_parent_run(self, run_id: str) -> Optional[Run]:
"""Gets the parent run for the given run id if one exists.
Args:
run_id: Unique identifier for the child run.
Returns:
A single :py:class:`mlflow.entities.Run` object, if the parent run exists. Otherwise,
returns None.
.. code-block:: python
:test:
:caption: Example
import mlflow
from mlflow import MlflowClient
# Create nested runs
with mlflow.start_run():
with mlflow.start_run(nested=True) as child_run:
child_run_id = child_run.info.run_id
client = MlflowClient()
parent_run = client.get_parent_run(child_run_id)
print(f"child_run_id: {child_run_id}")
print(f"parent_run_id: {parent_run.info.run_id}")
.. code-block:: text
:caption: Output
child_run_id: 7d175204675e40328e46d9a6a5a7ee6a
parent_run_id: 8979459433a24a52ab3be87a229a9cdf
"""
child_run = self._tracking_client.get_run(run_id)
parent_run_id = child_run.data.tags.get(MLFLOW_PARENT_RUN_ID)
if parent_run_id is None:
return None
return self._tracking_client.get_run(parent_run_id)
[docs] def get_metric_history(self, run_id: str, key: str) -> List[Metric]:
"""Return a list of metric objects corresponding to all values logged for a given metric.
Args:
run_id: Unique identifier for run.
key: Metric name within the run.
Returns:
A list of :py:class:`mlflow.entities.Metric` entities if logged, else empty list.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_metric_info(history):
for m in history:
print(f"name: {m.key}")
print(f"value: {m.value}")
print(f"step: {m.step}")
print(f"timestamp: {m.timestamp}")
print("--")
# Create a run under the default experiment (whose id is "0"). Since this is low-level
# CRUD operation, the method will create a run. To end the run, you'll have
# to explicitly end it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print(f"run_id: {run.info.run_id}")
print("--")
# Log couple of metrics, update their initial value, and fetch each
# logged metrics' history.
for k, v in [("m1", 1.5), ("m2", 2.5)]:
client.log_metric(run.info.run_id, k, v, step=0)
client.log_metric(run.info.run_id, k, v + 1, step=1)
print_metric_info(client.get_metric_history(run.info.run_id, k))
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
run_id: c360d15714994c388b504fe09ea3c234
--
name: m1
value: 1.5
step: 0
timestamp: 1603423788607
--
name: m1
value: 2.5
step: 1
timestamp: 1603423788608
--
name: m2
value: 2.5
step: 0
timestamp: 1603423788609
--
name: m2
value: 3.5
step: 1
timestamp: 1603423788610
--
"""
return self._tracking_client.get_metric_history(run_id, key)
[docs] def create_run(
self,
experiment_id: str,
start_time: Optional[int] = None,
tags: Optional[Dict[str, Any]] = None,
run_name: Optional[str] = None,
) -> Run:
"""
Create a :py:class:`mlflow.entities.Run` object that can be associated with
metrics, parameters, artifacts, etc.
Unlike :py:func:`mlflow.projects.run`, creates objects but does not run code.
Unlike :py:func:`mlflow.start_run`, does not change the "active run" used by
:py:func:`mlflow.log_param`.
Args:
experiment_id: The string ID of the experiment to create a run in.
start_time: If not provided, use the current timestamp.
tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.RunTag` objects.
run_name: The name of this run.
Returns:
:py:class:`mlflow.entities.Run` that was created.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create a run with a tag under the default experiment (whose id is '0').
tags = {"engineering": "ML Platform"}
name = "platform-run-24"
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id, tags=tags, run_name=name)
# Show newly created run metadata info
print(f"Run tags: {run.data.tags}")
print(f"Experiment id: {run.info.experiment_id}")
print(f"Run id: {run.info.run_id}")
print(f"Run name: {run.info.run_name}")
print(f"lifecycle_stage: {run.info.lifecycle_stage}")
print(f"status: {run.info.status}")
.. code-block:: text
:caption: Output
Run tags: {'engineering': 'ML Platform'}
Experiment id: 0
Run id: 65fb9e2198764354bab398105f2e70c1
Run name: platform-run-24
lifecycle_stage: active
status: RUNNING
"""
return self._tracking_client.create_run(experiment_id, start_time, tags, run_name)
def _upload_trace_data(self, trace_info: TraceInfo, trace_data: TraceData) -> None:
return self._tracking_client._upload_trace_data(trace_info, trace_data)
[docs] @experimental
def delete_traces(
self,
experiment_id: str,
max_timestamp_millis: Optional[int] = None,
max_traces: Optional[int] = None,
request_ids: Optional[List[str]] = None,
) -> int:
"""
Delete traces based on the specified criteria.
- Either `max_timestamp_millis` or `request_ids` must be specified, but not both.
- `max_traces` can't be specified if `request_ids` is specified.
Args:
experiment_id: ID of the associated experiment.
max_timestamp_millis: The maximum timestamp in milliseconds since the UNIX epoch for
deleting traces. Traces older than or equal to this timestamp will be deleted.
max_traces: The maximum number of traces to delete. If max_traces is specified, and
it is less than the number of traces that would be deleted based on the
max_timestamp_millis, the oldest traces will be deleted first.
request_ids: A set of request IDs to delete.
Returns:
The number of traces deleted.
Example:
.. code-block:: python
:test:
import mlflow
import time
client = mlflow.MlflowClient()
# Delete all traces in the experiment
client.delete_traces(
experiment_id="0", max_timestamp_millis=time.time_ns() // 1_000_000
)
# Delete traces based on max_timestamp_millis and max_traces
# Older traces will be deleted first.
some_timestamp = time.time_ns() // 1_000_000
client.delete_traces(
experiment_id="0", max_timestamp_millis=some_timestamp, max_traces=2
)
# Delete traces based on request_ids
client.delete_traces(experiment_id="0", request_ids=["id_1", "id_2"])
"""
return self._tracking_client.delete_traces(
experiment_id=experiment_id,
max_timestamp_millis=max_timestamp_millis,
max_traces=max_traces,
request_ids=request_ids,
)
[docs] @experimental
def get_trace(self, request_id: str, display=True) -> Trace:
"""
Get the trace matching the specified ``request_id``.
Args:
request_id: String ID of the trace to fetch.
Returns:
The retrieved :py:class:`Trace <mlflow.entities.Trace>`.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
request_id = "12345678"
trace = client.get_trace(request_id)
"""
trace = self._tracking_client.get_trace(request_id)
if display:
get_display_handler().display_traces([trace])
return trace
[docs] @experimental
def search_traces(
self,
experiment_ids: List[str],
filter_string: Optional[str] = None,
max_results: int = SEARCH_TRACES_DEFAULT_MAX_RESULTS,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[Trace]:
"""
Return traces that match the given list of search expressions within the experiments.
Args:
experiment_ids: List of experiment ids to scope the search.
filter_string: A search filter string.
max_results: Maximum number of traces desired.
order_by: List of order_by clauses.
page_token: Token specifying the next page of results. It should be obtained from
a ``search_traces`` call.
Returns:
A :py:class:`PagedList <mlflow.store.entities.PagedList>` of
:py:class:`Trace <mlflow.entities.Trace>` objects that satisfy the search
expressions. If the underlying tracking store supports pagination, the token for the
next page may be obtained via the ``token`` attribute of the returned object; however,
some store implementations may not support pagination and thus the returned token would
not be meaningful in such cases.
"""
traces = self._tracking_client.search_traces(
experiment_ids=experiment_ids,
filter_string=filter_string,
max_results=max_results,
order_by=order_by,
page_token=page_token,
)
get_display_handler().display_traces(traces)
return traces
[docs] def start_trace(
self,
name: str,
span_type: str = SpanType.UNKNOWN,
inputs: Optional[Dict[str, Any]] = None,
attributes: Optional[Dict[str, str]] = None,
tags: Optional[Dict[str, str]] = None,
experiment_id: Optional[str] = None,
) -> Span:
"""
Create a new trace object and start a root span under it.
This is an imperative API to manually create a new span under a specific trace id and
parent span, unlike the higher-level APIs like :py:func:`@mlflow.trace <mlflow.trace>`
and :py:func:`with mlflow.start_span() <mlflow.start_span>`, which automatically manage
the span lifecycle and parent-child relationship. You only need to call this method
when using the :py:func:`start_span() <start_span>` method of MlflowClient to create
spans.
.. attention::
A trace started with this method must be ended by calling
``MlflowClient().end_trace(request_id)``. Otherwise the trace will be not recorded.
Args:
name: The name of the trace (and the root span).
span_type: The type of the span.
inputs: Inputs to set on the root span of the trace.
attributes: A dictionary of attributes to set on the root span of the trace.
tags: A dictionary of tags to set on the trace.
experiment_id: The ID of the experiment to create the trace in. If not provided,
MLflow will look for valid experiment in the following order: activated using
:py:func:`mlflow.set_experiment() <mlflow.set_experiment>`,
``MLFLOW_EXPERIMENT_NAME`` environment variable, ``MLFLOW_EXPERIMENT_ID``
environment variable, or the default experiment as defined by the tracking server.
Returns:
An :py:class:`Span <mlflow.entities.Span>` object
representing the root span of the trace.
Example:
.. code-block:: python
:test:
from mlflow import MlflowClient
client = MlflowClient()
root_span = client.start_trace("my_trace")
request_id = root_span.request_id
# Create a child span
child_span = client.start_span(
"child_span", request_id=request_id, parent_id=root_span.span_id
)
# Do something...
client.end_span(request_id=request_id, span_id=child_span.span_id)
client.end_trace(request_id)
"""
# Validate no active trace is set in the global context. If there is an active trace,
# the span created by this method will be a child span under the active trace rather than
# a root span of a new trace, which is not desired behavior.
if span := mlflow.get_current_active_span():
raise MlflowException(
f"Another trace is already set in the global context with ID {span.request_id}. "
"It appears that you have already started a trace using fluent APIs like "
"`@mlflow.trace()` or `with mlflow.start_span()`. However, it is not allowed "
"to call MlflowClient.start_trace() under an active trace created by fluent APIs "
"because it may lead to unexpected behavior. To resolve this issue, consider the "
"following options:\n"
" - To create a child span under the active trace, use "
"`with mlflow.start_span()` or `MlflowClient.start_span()` instead.\n"
" - To start multiple traces in parallel, avoid using fluent APIs "
"and create all traces using `MlflowClient.start_trace()`.",
error_code=BAD_REQUEST,
)
try:
# Create new trace and a root span
# Once OTel span is created, SpanProcessor.on_start is invoked
# TraceInfo is created and logged into backend store inside on_start method
otel_span = mlflow.tracing.provider.start_detached_span(
name, experiment_id=experiment_id
)
request_id = get_otel_attribute(otel_span, SpanAttributeKey.REQUEST_ID)
mlflow_span = create_mlflow_span(otel_span, request_id, span_type)
# # If the span is a no-op span i.e. tracing is disabled, do nothing
if isinstance(mlflow_span, NoOpSpan):
return mlflow_span
if inputs is not None:
mlflow_span.set_inputs(inputs)
mlflow_span.set_attributes(attributes or {})
trace_manager = InMemoryTraceManager.get_instance()
tags = exclude_immutable_tags(tags or {})
# Update trace tags for trace in in-memory trace manager
with trace_manager.get_trace(request_id) as trace:
trace.info.tags.update(tags)
# Register new span in the in-memory trace manager
trace_manager.register_span(mlflow_span)
return mlflow_span
except Exception as e:
_logger.warning(
f"Failed to start trace {name}: {e}. "
"For full traceback, set logging level to debug.",
exc_info=_logger.isEnabledFor(logging.DEBUG),
)
return NoOpSpan()
[docs] @experimental
def end_trace(
self,
request_id: str,
outputs: Optional[Dict[str, Any]] = None,
attributes: Optional[Dict[str, Any]] = None,
status: Union[SpanStatus, str] = "OK",
):
"""
End the trace with the given trace ID. This will end the root span of the trace and
log the trace to the backend if configured.
If any of children spans are not ended, they will be ended forcefully with the status
``TRACE_STATUS_UNSPECIFIED``. If the trace is already ended, this method will have
no effect.
Args:
request_id: The ID of the trace to end.
outputs: Outputs to set on the trace.
attributes: A dictionary of attributes to set on the trace. If the trace already
has attributes, the new attributes will be merged with the existing ones.
If the same key already exists, the new value will overwrite the old one.
status: The status of the trace. This can be a
:py:class:`SpanStatus <mlflow.entities.SpanStatus>` object or a string
representing the status code defined in
:py:class:`SpanStatusCode <mlflow.entities.SpanStatusCode>`
e.g. ``"OK"``, ``"ERROR"``. The default status is OK.
"""
# NB: If the specified request ID is of no-op span, this means something went wrong in
# the span start logic. We should simply ignore it as the upstream should already
# have logged the error.
if request_id == NO_OP_SPAN_REQUEST_ID:
return
trace_manager = InMemoryTraceManager.get_instance()
root_span_id = trace_manager.get_root_span_id(request_id)
if root_span_id is None:
trace = self.get_trace(request_id=request_id)
if trace is None:
raise MlflowException(
f"Trace with ID {request_id} not found.",
error_code=RESOURCE_DOES_NOT_EXIST,
)
elif trace.info.status in TraceStatus.end_statuses():
raise MlflowException(
f"Trace with ID {request_id} already finished.",
error_code=INVALID_PARAMETER_VALUE,
)
self.end_span(request_id, root_span_id, outputs, attributes, status)
def _upload_trace_spans_as_tag(self, trace_info: TraceInfo, trace_data: TraceData):
# When a trace is logged, we set a mlflow.traceSpans tag via SetTraceTag API
# https://databricks.atlassian.net/browse/ML-40306
parsed_spans = []
for span in trace_data.spans:
parsed_span = {}
parsed_span["name"] = span.name
parsed_span["type"] = span.span_type
span_inputs = span.inputs
if span_inputs and isinstance(span_inputs, dict):
parsed_span["inputs"] = list(span_inputs.keys())
span_outputs = span.outputs
if span_outputs and isinstance(span_outputs, dict):
parsed_span["outputs"] = list(span_outputs.keys())
parsed_spans.append(parsed_span)
# Directly set the tag on the trace in the backend
self._tracking_client.set_trace_tag(
trace_info.request_id,
TraceTagKey.TRACE_SPANS,
json.dumps(parsed_spans, ensure_ascii=False),
)
[docs] @experimental
def start_span(
self,
name: str,
request_id: str,
parent_id: str,
span_type: str = SpanType.UNKNOWN,
inputs: Optional[Dict[str, Any]] = None,
attributes: Optional[Dict[str, Any]] = None,
start_time_ns: Optional[int] = None,
) -> Span:
"""
Create a new span and start it without attaching it to the global trace context.
This is an imperative API to manually create a new span under a specific trace id
and parent span, unlike the higher-level APIs like
:py:func:`@mlflow.trace <mlflow.trace>` decorator and
:py:func:`with mlflow.start_span() <mlflow.start_span>` context manager, which
automatically manage the span lifecycle and parent-child relationship.
This API is useful for the case where the automatic context management is not
sufficient, such as callback-based instrumentation where span start and end are
not in the same call stack, or multi-threaded applications where the context is
not propagated automatically.
This API requires a parent span ID to be provided explicitly. If you haven't
started any span yet, use the :py:func:`start_trace() <start_trace>` method to
start a new trace and a root span.
.. warning::
The span created with this method needs to be ended explicitly by calling
the :py:func:`end_span() <end_span>` method. Otherwise the span will be
recorded with the incorrect end time and status ``TRACE_STATUS_UNSPECIFIED``.
.. tip::
Instead of creating a root span with the :py:func:`start_trace() <start_trace>`
method, you can also use this method within the context of a parent span created
by the fluent APIs like :py:func:`@mlflow.trace <mlflow.trace>` and
:py:func:`with mlflow.start_span() <mlflow.start_span>`, by passing its span
ids the parent. This flexibility allows you to use the imperative APIs in
conjunction with the fluent APIs like below:
.. code-block:: python
:test:
import mlflow
from mlflow import MlflowClient
client = MlflowClient()
with mlflow.start_span("parent_span") as parent_span:
child_span = client.start_span(
name="child_span",
request_id=parent_span.request_id,
parent_id=parent_span.span_id,
)
# Do something...
client.end_span(
request_id=parent_span.request_id,
span_id=child_span.span_id,
)
However, **the opposite does not work**. You cannot use the fluent APIs within
the span created by this MlflowClient API. This is because the fluent APIs
fetches the current span from the managed context, which is not set by the MLflow
Client APIs. Once you create a span with the MLflow Client APIs, all children
spans must be created with the MLflow Client APIs. Please be cautious when using
this mixed approach, as it can lead to unexpected behavior if not used properly.
Args:
name: The name of the span.
request_id: The ID of the trace to attach the span to. This is synonym to
trace_id` in OpenTelemetry.
span_type: The type of the span. Can be either a string or a
:py:class:`SpanType <mlflow.entities.SpanType>` enum value.
parent_id: The ID of the parent span. The parent span can be a span created by
both fluent APIs like `with mlflow.start_span()`, and imperative APIs like this.
inputs: Inputs to set on the span.
attributes: A dictionary of attributes to set on the span.
start_time_ns: The start time of the span in nano seconds since the UNIX epoch.
If not provided, the current time will be used.
Returns:
An :py:class:`mlflow.entities.Span` object representing the span.
Example:
.. code-block:: python
:test:
from mlflow import MlflowClient
client = MlflowClient()
span = client.start_trace("my_trace")
x = 2
# Create a child span
child_span = client.start_span(
"child_span",
request_id=span.request_id,
parent_id=span.span_id,
inputs={"x": x},
)
y = x**2
client.end_span(
request_id=child_span.request_id,
span_id=child_span.span_id,
attributes={"factor": 2},
outputs={"y": y},
)
client.end_trace(span.request_id)
"""
# If parent span is no-op span, the child should also be no-op too
if request_id == NO_OP_SPAN_REQUEST_ID:
return NoOpSpan()
if not parent_id:
raise MlflowException(
"start_span() must be called with an explicit parent_id."
"If you haven't started any span yet, use MLflowClient().start_trace() "
"to start a new trace and root span.",
error_code=INVALID_PARAMETER_VALUE,
)
if not request_id:
raise MlflowException(
"Request ID must be provided to start a span.",
error_code=INVALID_PARAMETER_VALUE,
)
trace_manager = InMemoryTraceManager.get_instance()
if not (parent_span := trace_manager.get_span_from_id(request_id, parent_id)):
raise MlflowException(
f"Parent span with ID '{parent_id}' not found.",
error_code=RESOURCE_DOES_NOT_EXIST,
)
try:
otel_span = mlflow.tracing.provider.start_detached_span(
name=name, parent=parent_span._span
)
# We have to set the custom start time here after the span is created,
# because span processor may override the start time in the on_start() method.
if start_time_ns is not None:
otel_span._start_time = start_time_ns
span = create_mlflow_span(otel_span, request_id, span_type)
span.set_attributes(attributes or {})
if inputs is not None:
span.set_inputs(inputs)
trace_manager.register_span(span)
return span
except Exception as e:
_logger.warning(
f"Failed to start span {name}: {e}. "
"For full traceback, set logging level to debug.",
exc_info=_logger.isEnabledFor(logging.DEBUG),
)
return NoOpSpan()
[docs] @experimental
def end_span(
self,
request_id: str,
span_id: str,
outputs: Optional[Dict[str, Any]] = None,
attributes: Optional[Dict[str, Any]] = None,
status: Union[SpanStatus, str] = "OK",
end_time_ns: Optional[int] = None,
):
"""
End the span with the given trace ID and span ID.
Args:
request_id: The ID of the trace to end.
span_id: The ID of the span to end.
outputs: Outputs to set on the span.
attributes: A dictionary of attributes to set on the span. If the span already has
attributes, the new attributes will be merged with the existing ones. If the same
key already exists, the new value will overwrite the old one.
status: The status of the span. This can be a
:py:class:`SpanStatus <mlflow.entities.SpanStatus>` object or a string
representing the status code defined in
:py:class:`SpanStatusCode <mlflow.entities.SpanStatusCode>`
e.g. ``"OK"``, ``"ERROR"``. The default status is OK.
end_time_ns: The end time of the span in nano seconds since the UNIX epoch.
If not provided, the current time will be used.
"""
if request_id == NO_OP_SPAN_REQUEST_ID:
return
trace_manager = InMemoryTraceManager.get_instance()
span = trace_manager.get_span_from_id(request_id, span_id)
if span is None:
raise MlflowException(
f"Span with ID {span_id} is not found or already finished.",
error_code=RESOURCE_DOES_NOT_EXIST,
)
span.set_attributes(attributes or {})
if outputs is not None:
span.set_outputs(outputs)
span.set_status(status)
try:
span.end(end_time=end_time_ns)
except Exception as e:
_logger.warning(
f"Failed to end span {span_id}: {e}. "
"For full traceback, set logging level to debug.",
exc_info=_logger.isEnabledFor(logging.DEBUG),
)
def _start_tracked_trace(
self,
experiment_id: str,
timestamp_ms: int,
request_metadata: Optional[Dict[str, str]] = None,
tags: Optional[Dict[str, str]] = None,
) -> TraceInfo:
"""
Start an initial TraceInfo object in the backend store.
Args:
experiment_id: String id of the experiment for this run.
timestamp_ms: Start time of the trace, in milliseconds since the UNIX epoch.
request_metadata: Metadata of the trace.
tags: Tags of the trace.
Returns:
The created TraceInfo object.
"""
# Some tags like mlflow.runName are immutable once logged in tracking server.
return self._tracking_client.start_trace(
experiment_id=experiment_id,
timestamp_ms=timestamp_ms,
request_metadata=request_metadata or {},
tags=tags or {},
)
def _upload_ended_trace_info(
self,
trace_info: TraceInfo,
) -> TraceInfo:
"""
Update the TraceInfo object in the backend store with the completed trace info.
Args:
trace_info: Updated TraceInfo object to be stored in the backend store.
Returns:
The updated TraceInfo object.
"""
return self._tracking_client.end_trace(
request_id=trace_info.request_id,
timestamp_ms=trace_info.timestamp_ms + trace_info.execution_time_ms,
status=trace_info.status,
request_metadata=trace_info.request_metadata,
tags=trace_info.tags or {},
)
[docs] @experimental
def set_trace_tag(self, request_id: str, key: str, value: str):
"""
Set a tag on the trace with the given trace ID.
The trace can be an active one or the one that has already ended and recorded in the
backend. Below is an example of setting a tag on an active trace. You can replace the
``request_id`` parameter to set a tag on an already ended trace.
.. code-block:: python
:test:
from mlflow import MlflowClient
client = MlflowClient()
root_span = client.start_trace("my_trace")
client.set_trace_tag(root_span.request_id, "key", "value")
client.end_trace(root_span.request_id)
Args:
request_id: The ID of the trace to set the tag on.
key: The string key of the tag. Must be at most 250 characters long, otherwise
it will be truncated when stored.
value: The string value of the tag. Must be at most 250 characters long, otherwise
it will be truncated when stored.
"""
if key.startswith("mlflow."):
raise MlflowException(
f"Tags starting with 'mlflow.' are reserved and cannot be set. "
f"Attempted to set tag with key '{key}' on trace with ID '{request_id}'.",
error_code=INVALID_PARAMETER_VALUE,
)
# Trying to set the tag on the active trace first
with InMemoryTraceManager.get_instance().get_trace(request_id) as trace:
if trace:
trace.info.tags[key] = str(value)
return
# If the trace is not active, try to set the tag on the trace in the backend
self._tracking_client.set_trace_tag(request_id, key, value)
[docs] @experimental
def delete_trace_tag(self, request_id: str, key: str) -> None:
"""
Delete a tag on the trace with the given trace ID.
The trace can be an active one or the one that has already ended and recorded in the
backend. Below is an example of deleting a tag on an active trace. You can replace the
``request_id`` parameter to delete a tag on an already ended trace.
.. code-block:: python
:test:
from mlflow import MlflowClient
client = MlflowClient()
root_span = client.start_trace("my_trace", tags={"key": "value"})
client.delete_trace_tag(root_span.request_id, "key")
client.end_trace(root_span.request_id)
Args:
request_id: The ID of the trace to delete the tag from.
key: The string key of the tag. Must be at most 250 characters long, otherwise
it will be truncated when stored.
"""
# Trying to delete the tag on the active trace first
with InMemoryTraceManager.get_instance().get_trace(request_id) as trace:
if trace:
if key in trace.info.tags:
trace.info.tags.pop(key)
return
else:
raise MlflowException(
f"Tag with key {key} not found in trace with ID {request_id}.",
error_code=RESOURCE_DOES_NOT_EXIST,
)
# If the trace is not active, try to delete the tag on the trace in the backend
self._tracking_client.delete_trace_tag(request_id, key)
[docs] def search_experiments(
self,
view_type: int = ViewType.ACTIVE_ONLY,
max_results: Optional[int] = SEARCH_MAX_RESULTS_DEFAULT,
filter_string: Optional[str] = None,
order_by: Optional[List[str]] = None,
page_token=None,
) -> PagedList[Experiment]:
"""
Search for experiments that match the specified search query.
Args:
view_type: One of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``, or ``ALL``
defined in :py:class:`mlflow.entities.ViewType`.
max_results: Maximum number of experiments desired. Certain server backend may apply
its own limit.
filter_string: Filter query string (e.g., ``"name = 'my_experiment'"``), defaults to
searching for all experiments. The following identifiers, comparators, and logical
operators are supported.
Identifiers
- ``name``: Experiment name
- ``creation_time``: Experiment creation time
- ``last_update_time``: Experiment last update time
- ``tags.<tag_key>``: Experiment tag. If ``tag_key`` contains
spaces, it must be wrapped with backticks (e.g., ``"tags.`extra key`"``).
Comparators for string attributes and tags
- ``=``: Equal to
- ``!=``: Not equal to
- ``LIKE``: Case-sensitive pattern match
- ``ILIKE``: Case-insensitive pattern match
Comparators for numeric attributes
- ``=``: Equal to
- ``!=``: Not equal to
- ``<``: Less than
- ``<=``: Less than or equal to
- ``>``: Greater than
- ``>=``: Greater than or equal to
Logical operators
- ``AND``: Combines two sub-queries and returns True if both of them are True.
order_by: List of columns to order by. The ``order_by`` column can contain an optional
``DESC`` or ``ASC`` value (e.g., ``"name DESC"``). The default ordering is ``ASC``,
so ``"name"`` is equivalent to ``"name ASC"``. If unspecified, defaults to
``["last_update_time DESC"]``, which lists experiments updated most recently first.
The following fields are supported:
- ``experiment_id``: Experiment ID
- ``name``: Experiment name
- ``creation_time``: Experiment creation time
- ``last_update_time``: Experiment last update time
page_token: Token specifying the next page of results. It should be obtained from
a ``search_experiments`` call.
Returns:
A :py:class:`PagedList <mlflow.store.entities.PagedList>` of
:py:class:`Experiment <mlflow.entities.Experiment>` objects. The pagination token
for the next page can be obtained via the ``token`` attribute of the object.
.. code-block:: python
:caption: Example
import mlflow
def assert_experiment_names_equal(experiments, expected_names):
actual_names = [e.name for e in experiments if e.name != "Default"]
assert actual_names == expected_names, (actual_names, expected_names)
mlflow.set_tracking_uri("sqlite:///:memory:")
client = mlflow.MlflowClient()
# Create experiments
for name, tags in [
("a", None),
("b", None),
("ab", {"k": "v"}),
("bb", {"k": "V"}),
]:
client.create_experiment(name, tags=tags)
# Search for experiments with name "a"
experiments = client.search_experiments(filter_string="name = 'a'")
assert_experiment_names_equal(experiments, ["a"])
# Search for experiments with name starting with "a"
experiments = client.search_experiments(filter_string="name LIKE 'a%'")
assert_experiment_names_equal(experiments, ["ab", "a"])
# Search for experiments with tag key "k" and value ending with "v" or "V"
experiments = client.search_experiments(filter_string="tags.k ILIKE '%v'")
assert_experiment_names_equal(experiments, ["bb", "ab"])
# Search for experiments with name ending with "b" and tag {"k": "v"}
experiments = client.search_experiments(filter_string="name LIKE '%b' AND tags.k = 'v'")
assert_experiment_names_equal(experiments, ["ab"])
# Sort experiments by name in ascending order
experiments = client.search_experiments(order_by=["name"])
assert_experiment_names_equal(experiments, ["a", "ab", "b", "bb"])
# Sort experiments by ID in descending order
experiments = client.search_experiments(order_by=["experiment_id DESC"])
assert_experiment_names_equal(experiments, ["bb", "ab", "b", "a"])
"""
return self._tracking_client.search_experiments(
view_type=view_type,
max_results=max_results,
filter_string=filter_string,
order_by=order_by,
page_token=page_token,
)
[docs] def get_experiment(self, experiment_id: str) -> Experiment:
"""Retrieve an experiment by experiment_id from the backend store
Args:
experiment_id: The experiment ID returned from ``create_experiment``.
Returns:
:py:class:`mlflow.entities.Experiment`
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
exp_id = client.create_experiment("Experiment")
experiment = client.get_experiment(exp_id)
# Show experiment info
print(f"Name: {experiment.name}")
print(f"Experiment ID: {experiment.experiment_id}")
print(f"Artifact Location: {experiment.artifact_location}")
print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
.. code-block:: text
:caption: Output
Name: Experiment
Experiment ID: 1
Artifact Location: file:///.../mlruns/1
Lifecycle_stage: active
"""
return self._tracking_client.get_experiment(experiment_id)
[docs] def get_experiment_by_name(self, name: str) -> Optional[Experiment]:
"""Retrieve an experiment by experiment name from the backend store
Args:
name: The experiment name, which is case sensitive.
Returns:
An instance of :py:class:`mlflow.entities.Experiment`
if an experiment with the specified name exists, otherwise None.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Case-sensitive name
client = MlflowClient()
experiment = client.get_experiment_by_name("Default")
# Show experiment info
print(f"Name: {experiment.name}")
print(f"Experiment ID: {experiment.experiment_id}")
print(f"Artifact Location: {experiment.artifact_location}")
print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
.. code-block:: text
:caption: Output
Name: Default
Experiment ID: 0
Artifact Location: file:///.../mlruns/0
Lifecycle_stage: active
"""
return self._tracking_client.get_experiment_by_name(name)
[docs] def create_experiment(
self,
name: str,
artifact_location: Optional[str] = None,
tags: Optional[Dict[str, Any]] = None,
) -> str:
"""Create an experiment.
Args:
name: The experiment name, which must be a unique string.
artifact_location: The location to store run artifacts. If not provided, the server
picks anappropriate default.
tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.ExperimentTag` objects, set as
experiment tags upon experiment creation.
Returns:
String as an integer ID of the created experiment.
.. code-block:: python
:caption: Example
from pathlib import Path
from mlflow import MlflowClient
# Create an experiment with a name that is unique and case sensitive.
client = MlflowClient()
experiment_id = client.create_experiment(
"Social NLP Experiments",
artifact_location=Path.cwd().joinpath("mlruns").as_uri(),
tags={"version": "v1", "priority": "P1"},
)
client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP")
# Fetch experiment metadata information
experiment = client.get_experiment(experiment_id)
print(f"Name: {experiment.name}")
print(f"Experiment_id: {experiment.experiment_id}")
print(f"Artifact Location: {experiment.artifact_location}")
print(f"Tags: {experiment.tags}")
print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
.. code-block:: text
:caption: Output
Name: Social NLP Experiments
Experiment_id: 1
Artifact Location: file:///.../mlruns
Tags: {'version': 'v1', 'priority': 'P1', 'nlp.framework': 'Spark NLP'}
Lifecycle_stage: active
"""
return self._tracking_client.create_experiment(name, artifact_location, tags)
[docs] def delete_experiment(self, experiment_id: str) -> None:
"""Delete an experiment from the backend store.
This deletion is a soft-delete, not a permanent deletion. Experiment names can not be
reused, unless the deleted experiment is permanently deleted by a database admin.
Args:
experiment_id: The experiment ID returned from ``create_experiment``.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create an experiment with a name that is unique and case sensitive
client = MlflowClient()
experiment_id = client.create_experiment("New Experiment")
client.delete_experiment(experiment_id)
# Examine the deleted experiment details.
experiment = client.get_experiment(experiment_id)
print(f"Name: {experiment.name}")
print(f"Artifact Location: {experiment.artifact_location}")
print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
.. code-block:: text
:caption: Output
Name: New Experiment
Artifact Location: file:///.../mlruns/1
Lifecycle_stage: deleted
"""
self._tracking_client.delete_experiment(experiment_id)
[docs] def restore_experiment(self, experiment_id: str) -> None:
"""
Restore a deleted experiment unless permanently deleted.
Args:
experiment_id: The experiment ID returned from ``create_experiment``.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_experiment_info(experiment):
print(f"Name: {experiment.name}")
print(f"Experiment Id: {experiment.experiment_id}")
print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
# Create and delete an experiment
client = MlflowClient()
experiment_id = client.create_experiment("New Experiment")
client.delete_experiment(experiment_id)
# Examine the deleted experiment details.
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
print("--")
# Restore the experiment and fetch its info
client.restore_experiment(experiment_id)
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
.. code-block:: text
:caption: Output
Name: New Experiment
Experiment Id: 1
Lifecycle_stage: deleted
--
Name: New Experiment
Experiment Id: 1
Lifecycle_stage: active
"""
self._tracking_client.restore_experiment(experiment_id)
[docs] def rename_experiment(self, experiment_id: str, new_name: str) -> None:
"""
Update an experiment's name. The new name must be unique.
Args:
experiment_id: The experiment ID returned from ``create_experiment``.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_experiment_info(experiment):
print(f"Name: {experiment.name}")
print(f"Experiment_id: {experiment.experiment_id}")
print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
# Create an experiment with a name that is unique and case sensitive
client = MlflowClient()
experiment_id = client.create_experiment("Social NLP Experiments")
# Fetch experiment metadata information
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
print("--")
# Rename and fetch experiment metadata information
client.rename_experiment(experiment_id, "Social Media NLP Experiments")
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
.. code-block:: text
:caption: Output
Name: Social NLP Experiments
Experiment_id: 1
Lifecycle_stage: active
--
Name: Social Media NLP Experiments
Experiment_id: 1
Lifecycle_stage: active
"""
self._tracking_client.rename_experiment(experiment_id, new_name)
[docs] def log_metric(
self,
run_id: str,
key: str,
value: float,
timestamp: Optional[int] = None,
step: Optional[int] = None,
synchronous: Optional[bool] = None,
) -> Optional[RunOperations]:
"""
Log a metric against the run ID.
Args:
run_id: The run id to which the metric should be logged.
key: Metric name. This string may only contain alphanumerics, underscores
(_), dashes (-), periods (.), spaces ( ), and slashes (/).
All backend stores will support keys up to length 250, but some may
support larger keys.
value: Metric value. Note that some special values such
as +/- Infinity may be replaced by other values depending on the store. For
example, the SQLAlchemy store replaces +/- Inf with max / min float values.
All backend stores will support values up to length 5000, but some
may support larger values.
timestamp: Time when this metric was calculated. Defaults to the current system time.
step: Integer training step (iteration) at which was the metric calculated.
Defaults to 0.
synchronous: *Experimental* If True, blocks until the metric is logged successfully.
If False, logs the metric asynchronously and returns a future representing the
logging operation. If None, read from environment variable
`MLFLOW_ENABLE_ASYNC_LOGGING`, which defaults to False if not set.
Returns:
When `synchronous=True` or None, returns None. When `synchronous=False`, returns an
:py:class:`mlflow.utils.async_logging.run_operations.RunOperations` instance that
represents future for logging operation.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(r):
print(f"run_id: {r.info.run_id}")
print(f"metrics: {r.data.metrics}")
print(f"status: {r.info.status}")
# Create a run under the default experiment (whose id is '0').
# Since these are low-level CRUD operations, this method will create a run.
# To end the run, you'll have to explicitly end it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Log the metric. Unlike mlflow.log_metric this method
# does not start a run if one does not exist. It will log
# the metric for the run id in the backend store.
client.log_metric(run.info.run_id, "m", 1.5)
client.set_terminated(run.info.run_id)
run = client.get_run(run.info.run_id)
print_run_info(run)
# To log metric in async fashion
client.log_metric(run.info.run_id, "m", 1.5, synchronous=False)
.. code-block:: text
:caption: Output
run_id: 95e79843cb2c463187043d9065185e24
metrics: {}
status: RUNNING
--
run_id: 95e79843cb2c463187043d9065185e24
metrics: {'m': 1.5}
status: FINISHED
"""
synchronous = (
synchronous if synchronous is not None else not MLFLOW_ENABLE_ASYNC_LOGGING.get()
)
return self._tracking_client.log_metric(
run_id, key, value, timestamp, step, synchronous=synchronous
)
[docs] def log_param(
self, run_id: str, key: str, value: Any, synchronous: Optional[bool] = None
) -> Any:
"""
Log a parameter (e.g. model hyperparameter) against the run ID.
Args:
run_id: The run id to which the param should be logged.
key: Parameter name. This string may only contain alphanumerics, underscores
(_), dashes (-), periods (.), spaces ( ), and slashes (/).
All backend stores support keys up to length 250, but some may
support larger keys.
value: Parameter value, but will be string-ified if not.
All built-in backend stores support values up to length 6000, but some
may support larger values.
synchronous: *Experimental* If True, blocks until the metric is logged successfully.
If False, logs the metric asynchronously and returns a future representing the
logging operation. If None, read from environment variable
`MLFLOW_ENABLE_ASYNC_LOGGING`, which defaults to False if not set.
Returns:
When `synchronous=True` or None, returns parameter value. When `synchronous=False`,
returns an :py:class:`mlflow.utils.async_logging.run_operations.RunOperations`
instance that represents future for logging operation.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(r):
print(f"run_id: {r.info.run_id}")
print(f"params: {r.data.params}")
print(f"status: {r.info.status}")
# Create a run under the default experiment (whose id is '0').
# Since these are low-level CRUD operations, this method will create a run.
# To end the run, you'll have to explicitly end it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Log the parameter. Unlike mlflow.log_param this method
# does not start a run if one does not exist. It will log
# the parameter in the backend store
p_value = client.log_param(run.info.run_id, "p", 1)
assert p_value == 1
client.set_terminated(run.info.run_id)
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: e649e49c7b504be48ee3ae33c0e76c93
params: {}
status: RUNNING
--
run_id: e649e49c7b504be48ee3ae33c0e76c93
params: {'p': '1'}
status: FINISHED
"""
synchronous = (
synchronous if synchronous is not None else not MLFLOW_ENABLE_ASYNC_LOGGING.get()
)
if synchronous:
self._tracking_client.log_param(run_id, key, value, synchronous=True)
return value
else:
return self._tracking_client.log_param(run_id, key, value, synchronous=False)
[docs] def set_experiment_tag(self, experiment_id: str, key: str, value: Any) -> None:
"""
Set a tag on the experiment with the specified ID. Value is converted to a string.
Args:
experiment_id: String ID of the experiment.
key: Name of the tag.
value: Tag value (converted to a string).
.. code-block:: python
from mlflow import MlflowClient
# Create an experiment and set its tag
client = MlflowClient()
experiment_id = client.create_experiment("Social Media NLP Experiments")
client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP")
# Fetch experiment metadata information
experiment = client.get_experiment(experiment_id)
print(f"Name: {experiment.name}")
print(f"Tags: {experiment.tags}")
.. code-block:: text
Name: Social Media NLP Experiments
Tags: {'nlp.framework': 'Spark NLP'}
"""
self._tracking_client.set_experiment_tag(experiment_id, key, value)
[docs] def set_tag(
self, run_id: str, key: str, value: Any, synchronous: Optional[bool] = None
) -> Optional[RunOperations]:
"""
Set a tag on the run with the specified ID. Value is converted to a string.
Args:
run_id: String ID of the run.
key: Tag name. This string may only contain alphanumerics, underscores (_), dashes (-),
periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to
length 250, but some may support larger keys.
value: Tag value, but will be string-ified if not. All backend stores will support
values up to length 5000, but some may support larger values.
synchronous: *Experimental* If True, blocks until the metric is logged successfully.
If False, logs the metric asynchronously and returns a future representing the
logging operation. If None, read from environment variable
`MLFLOW_ENABLE_ASYNC_LOGGING`, which defaults to False if not set.
Returns:
When `synchronous=True` or None, returns None. When `synchronous=False`, returns an
`mlflow.utils.async_logging.run_operations.RunOperations` instance that represents
future for logging operation.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(run):
print(f"run_id: {run.info.run_id}")
print(f"Tags: {run.data.tags}")
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Set a tag and fetch updated run info
client.set_tag(run.info.run_id, "nlp.framework", "Spark NLP")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: 4f226eb5758145e9b28f78514b59a03b
Tags: {}
--
run_id: 4f226eb5758145e9b28f78514b59a03b
Tags: {'nlp.framework': 'Spark NLP'}
"""
synchronous = (
synchronous if synchronous is not None else not MLFLOW_ENABLE_ASYNC_LOGGING.get()
)
return self._tracking_client.set_tag(run_id, key, value, synchronous=synchronous)
[docs] def delete_tag(self, run_id: str, key: str) -> None:
"""Delete a tag from a run. This is irreversible.
Args:
run_id: String ID of the run.
key: Name of the tag.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(run):
print(f"run_id: {run.info.run_id}")
print(f"Tags: {run.data.tags}")
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
tags = {"t1": 1, "t2": 2}
experiment_id = "0"
run = client.create_run(experiment_id, tags=tags)
print_run_info(run)
print("--")
# Delete tag and fetch updated info
client.delete_tag(run.info.run_id, "t1")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: b7077267a59a45d78cd9be0de4bc41f5
Tags: {'t2': '2', 't1': '1'}
--
run_id: b7077267a59a45d78cd9be0de4bc41f5
Tags: {'t2': '2'}
"""
self._tracking_client.delete_tag(run_id, key)
[docs] def update_run(
self, run_id: str, status: Optional[str] = None, name: Optional[str] = None
) -> None:
"""Update a run with the specified ID to a new status or name.
Args:
run_id: The ID of the Run to update.
status: The new status of the run to set, if specified. At least one of ``status`` or
``name`` should be specified.
name: The new name of the run to set, if specified. At least one of ``name`` or
``status`` should be specified.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(run):
print(f"run_id: {run.info.run_id}")
print(f"run_name: {run.info.run_name}")
print(f"status: {run.info.status}")
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Update run and fetch info
client.update_run(run.info.run_id, "FINISHED", "new_name")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: 1cf6bf8bf6484dd8a598bd43be367b20
run_name: judicious-hog-915
status: RUNNING
--
run_id: 1cf6bf8bf6484dd8a598bd43be367b20
run_name: new_name
status: FINISHED
"""
self._tracking_client.update_run(run_id, status, name)
[docs] def log_batch(
self,
run_id: str,
metrics: Sequence[Metric] = (),
params: Sequence[Param] = (),
tags: Sequence[RunTag] = (),
synchronous: Optional[bool] = None,
) -> Optional[RunOperations]:
"""
Log multiple metrics, params, and/or tags.
Args:
run_id: String ID of the run
metrics: If provided, List of Metric(key, value, timestamp) instances.
params: If provided, List of Param(key, value) instances.
tags: If provided, List of RunTag(key, value) instances.
synchronous: *Experimental* If True, blocks until the metric is logged successfully.
If False, logs the metric asynchronously and returns a future representing the
logging operation. If None, read from environment variable
`MLFLOW_ENABLE_ASYNC_LOGGING`, which defaults to False if not set.
Raises:
mlflow.MlflowException: If any errors occur.
Returns:
When `synchronous=True` or None, returns None. When `synchronous=False`, returns an
:py:class:`mlflow.utils.async_logging.run_operations.RunOperations` instance that
represents future for logging operation.
.. code-block:: python
:caption: Example
import time
from mlflow import MlflowClient
from mlflow.entities import Metric, Param, RunTag
def print_run_info(r):
print(f"run_id: {r.info.run_id}")
print(f"params: {r.data.params}")
print(f"metrics: {r.data.metrics}")
print(f"tags: {r.data.tags}")
print(f"status: {r.info.status}")
# Create MLflow entities and a run under the default experiment (whose id is '0').
timestamp = int(time.time() * 1000)
metrics = [Metric("m", 1.5, timestamp, 1)]
params = [Param("p", "p")]
tags = [RunTag("t", "t")]
experiment_id = "0"
client = MlflowClient()
run = client.create_run(experiment_id)
# Log entities, terminate the run, and fetch run status
client.log_batch(run.info.run_id, metrics=metrics, params=params, tags=tags)
client.set_terminated(run.info.run_id)
run = client.get_run(run.info.run_id)
print_run_info(run)
# To log metric in async fashion
client.log_metric(run.info.run_id, "m", 1.5, synchronous=False)
.. code-block:: text
:caption: Output
run_id: ef0247fa3205410595acc0f30f620871
params: {'p': 'p'}
metrics: {'m': 1.5}
tags: {'t': 't'}
status: FINISHED
"""
synchronous = (
synchronous if synchronous is not None else not MLFLOW_ENABLE_ASYNC_LOGGING.get()
)
return self._tracking_client.log_batch(
run_id, metrics, params, tags, synchronous=synchronous
)
[docs] def log_artifact(self, run_id, local_path, artifact_path=None) -> None:
"""Write a local file or directory to the remote ``artifact_uri``.
Args:
local_path: Path to the file or directory to write.
artifact_path: If provided, the directory in ``artifact_uri`` to write to.
synchronous: *Experimental* If True, blocks until the metric is logged successfully.
If False, logs the metric asynchronously and returns a future representing the
logging operation. If None, read from environment variable
`MLFLOW_ENABLE_ASYNC_LOGGING`, which defaults to False if not set.
.. code-block:: python
:caption: Example
import tempfile
from pathlib import Path
from mlflow import MlflowClient
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
# log and fetch the artifact
with tempfile.TemporaryDirectory() as tmp_dir:
path = Path(tmp_dir, "features.txt")
path.write_text(features)
client.log_artifact(run.info.run_id, path)
artifacts = client.list_artifacts(run.info.run_id)
for artifact in artifacts:
print(f"artifact: {artifact.path}")
print(f"is_dir: {artifact.is_dir}")
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
artifact: features.txt
is_dir: False
"""
if run_id.startswith(TRACE_REQUEST_ID_PREFIX):
raise MlflowException(
f"Invalid run id: {run_id}. `log_artifact` run id must map to a valid run."
)
self._tracking_client.log_artifact(run_id, local_path, artifact_path)
[docs] def log_artifacts(
self, run_id: str, local_dir: str, artifact_path: Optional[str] = None
) -> None:
"""Write a directory of files to the remote ``artifact_uri``.
Args:
local_dir: Path to the directory of files to write.
artifact_path: If provided, the directory in ``artifact_uri`` to write to.
.. code-block:: python
:caption: Example
import json
import tempfile
from pathlib import Path
# Create some artifacts data to preserve
features = "rooms, zipcode, median_price, school_rating, transport"
data = {"state": "TX", "Available": 25, "Type": "Detached"}
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_dir = Path(tmp_dir)
with (tmp_dir / "data.json").open("w") as f:
json.dump(data, f, indent=2)
with (tmp_dir / "features.json").open("w") as f:
f.write(features)
# Create a run under the default experiment (whose id is '0'), and log
# all files in "data" to root artifact_uri/states
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
client.log_artifacts(run.info.run_id, tmp_dir, artifact_path="states")
artifacts = client.list_artifacts(run.info.run_id)
for artifact in artifacts:
print(f"artifact: {artifact.path}")
print(f"is_dir: {artifact.is_dir}")
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
artifact: states
is_dir: True
"""
self._tracking_client.log_artifacts(run_id, local_dir, artifact_path)
@contextlib.contextmanager
def _log_artifact_helper(self, run_id, artifact_file):
"""Yields a temporary path to store a file, and then calls `log_artifact` against that path.
Args:
run_id: String ID of the run.
artifact_file: The run-relative artifact file path in posixpath format.
Returns:
Temporary path to store a file.
"""
norm_path = posixpath.normpath(artifact_file)
filename = posixpath.basename(norm_path)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = os.path.join(tmp_dir, filename)
yield tmp_path
self.log_artifact(run_id, tmp_path, artifact_dir)
def _log_artifact_async_helper(self, run_id, artifact_file, artifact):
"""Log artifact asynchronously.
Args:
run_id: The unique identifier for the run. This ID is used to associate the
artifact with a specific run.
artifact_file: The file path of the artifact relative to the run's directory.
The path should be in POSIX format, using forward slashes (/) as directory
separators.
artifact: The artifact to be logged.
"""
norm_path = posixpath.normpath(artifact_file)
filename = posixpath.basename(norm_path)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
self._tracking_client._log_artifact_async(run_id, filename, artifact_dir, artifact)
[docs] def log_text(self, run_id: str, text: str, artifact_file: str) -> None:
"""Log text as an artifact.
Args:
run_id: String ID of the run.
text: String containing text to log.
artifact_file: The run-relative artifact file path in posixpath format to which
the text is saved (e.g. "dir/file.txt").
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
run = client.create_run(experiment_id="0")
# Log text to a file under the run's root artifact directory
client.log_text(run.info.run_id, "text1", "file1.txt")
# Log text in a subdirectory of the run's root artifact directory
client.log_text(run.info.run_id, "text2", "dir/file2.txt")
# Log HTML text
client.log_text(run.info.run_id, "<h1>header</h1>", "index.html")
"""
with self._log_artifact_helper(run_id, artifact_file) as tmp_path:
with open(tmp_path, "w", encoding="utf-8") as f:
f.write(text)
[docs] def log_dict(self, run_id: str, dictionary: Dict[str, Any], artifact_file: str) -> None:
"""Log a JSON/YAML-serializable object (e.g. `dict`) as an artifact. The serialization
format (JSON or YAML) is automatically inferred from the extension of `artifact_file`.
If the file extension doesn't exist or match any of [".json", ".yml", ".yaml"],
JSON format is used, and we stringify objects that can't be JSON-serialized.
Args:
run_id: String ID of the run.
dictionary: Dictionary to log.
artifact_file: The run-relative artifact file path in posixpath format to which
the dictionary is saved (e.g. "dir/data.json").
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
run = client.create_run(experiment_id="0")
run_id = run.info.run_id
dictionary = {"k": "v"}
# Log a dictionary as a JSON file under the run's root artifact directory
client.log_dict(run_id, dictionary, "data.json")
# Log a dictionary as a YAML file in a subdirectory of the run's root artifact directory
client.log_dict(run_id, dictionary, "dir/data.yml")
# If the file extension doesn't exist or match any of [".json", ".yaml", ".yml"],
# JSON format is used.
mlflow.log_dict(run_id, dictionary, "data")
mlflow.log_dict(run_id, dictionary, "data.txt")
"""
extension = os.path.splitext(artifact_file)[1]
with self._log_artifact_helper(run_id, artifact_file) as tmp_path:
with open(tmp_path, "w") as f:
# Specify `indent` to prettify the output
if extension in [".yml", ".yaml"]:
yaml.dump(dictionary, f, indent=2, default_flow_style=False)
else:
# Stringify objects that can't be JSON-serialized
json.dump(dictionary, f, indent=2, default=str)
[docs] def log_image(
self,
run_id: str,
image: Union["numpy.ndarray", "PIL.Image.Image", "mlflow.Image"],
artifact_file: Optional[str] = None,
key: Optional[str] = None,
step: Optional[int] = None,
timestamp: Optional[int] = None,
synchronous: Optional[bool] = None,
) -> None:
"""
Logs an image in MLflow, supporting two use cases:
1. Time-stepped image logging:
Ideal for tracking changes or progressions through iterative processes (e.g.,
during model training phases).
- Usage: :code:`log_image(image, key=key, step=step, timestamp=timestamp)`
2. Artifact file image logging:
Best suited for static image logging where the image is saved directly as a file
artifact.
- Usage: :code:`log_image(image, artifact_file)`
The following image formats are supported:
- `numpy.ndarray`_
- `PIL.Image.Image`_
.. _numpy.ndarray:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
.. _PIL.Image.Image:
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
- :class:`mlflow.Image`: An MLflow wrapper around PIL image for convenient image
logging.
Numpy array support
- data types:
- bool (useful for logging image masks)
- integer [0, 255]
- unsigned integer [0, 255]
- float [0.0, 1.0]
.. warning::
- Out-of-range integer values will raise ValueError.
- Out-of-range float values will auto-scale with min/max and warn.
- shape (H: height, W: width):
- H x W (Grayscale)
- H x W x 1 (Grayscale)
- H x W x 3 (an RGB channel order is assumed)
- H x W x 4 (an RGBA channel order is assumed)
Args:
run_id: String ID of run.
image: The image object to be logged.
artifact_file: Specifies the path, in POSIX format, where the image
will be stored as an artifact relative to the run's root directory (for
example, "dir/image.png"). This parameter is kept for backward compatibility
and should not be used together with `key`, `step`, or `timestamp`.
key: Image name for time-stepped image logging. This string may only contain
alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and
slashes (/).
step: Integer training step (iteration) at which the image was saved.
Defaults to 0.
timestamp: Time when this image was saved. Defaults to the current system time.
.. code-block:: python
:caption: Time-stepped image logging numpy example
import mlflow
import numpy as np
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
with mlflow.start_run() as run:
client = mlflow.MlflowClient()
client.log_image(run.info.run_id, image, key="dogs", step=3)
.. code-block:: python
:caption: Time-stepped image logging pillow example
import mlflow
from PIL import Image
image = Image.new("RGB", (100, 100))
with mlflow.start_run() as run:
client = mlflow.MlflowClient()
client.log_image(run.info.run_id, image, key="dogs", step=3)
.. code-block:: python
:caption: Time-stepped image logging with mlflow.Image example
import mlflow
from PIL import Image
# Saving an image to retrieve later.
Image.new("RGB", (100, 100)).save("image.png")
image = mlflow.Image("image.png")
with mlflow.start_run() as run:
client = mlflow.MlflowClient()
client.log_image(run.info.run_id, image, key="dogs", step=3)
.. code-block:: python
:caption: Legacy artifact file image logging numpy example
import mlflow
import numpy as np
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
with mlflow.start_run() as run:
client = mlflow.MlflowClient()
client.log_image(run.info.run_id, image, "image.png")
.. code-block:: python
:caption: Legacy artifact file image logging pillow example
import mlflow
from PIL import Image
image = Image.new("RGB", (100, 100))
with mlflow.start_run() as run:
client = mlflow.MlflowClient()
client.log_image(run.info.run_id, image, "image.png")
"""
synchronous = (
synchronous if synchronous is not None else not MLFLOW_ENABLE_ASYNC_LOGGING.get()
)
if artifact_file is not None and any(arg is not None for arg in [key, step, timestamp]):
raise TypeError(
"The `artifact_file` parameter cannot be used in conjunction with `key`, "
"`step`, or `timestamp` parameters. Please ensure that `artifact_file` is "
"specified alone, without any of these conflicting parameters."
)
elif artifact_file is None and key is None:
raise TypeError(
"Invalid arguments: Please specify exactly one of `artifact_file` or `key`. Use "
"`key` to log dynamic image charts or `artifact_file` for saving static images. "
)
import numpy as np
# Convert image type to PIL if its a numpy array
if isinstance(image, np.ndarray):
image = convert_to_pil_image(image)
elif isinstance(image, Image):
image = image.to_pil()
else:
# Import PIL and check if the image is a PIL image
import PIL.Image
if not isinstance(image, PIL.Image.Image):
raise TypeError(
f"Unsupported image object type: {type(image)}. "
"`image` must be one of numpy.ndarray, "
"PIL.Image.Image, and mlflow.Image."
)
if artifact_file is not None:
with self._log_artifact_helper(run_id, artifact_file) as tmp_path:
image.save(tmp_path)
elif key is not None:
# Check image key for invalid characters
if not re.match(r"^[a-zA-Z0-9_\-./ ]+$", key):
raise ValueError(
"The `key` parameter may only contain alphanumerics, underscores (_), "
"dashes (-), periods (.), spaces ( ), and slashes (/)."
f"The provided key `{key}` contains invalid characters."
)
step = step or 0
timestamp = timestamp or get_current_time_millis()
# Sanitize key to use in filename (replace / with # to avoid subdirectories)
sanitized_key = re.sub(r"/", "#", key)
filename_uuid = uuid.uuid4()
uncompressed_filename = (
f"images/{sanitized_key}%step%{step}%timestamp%{timestamp}%{filename_uuid}"
)
compressed_filename = f"{uncompressed_filename}%compressed"
# Save full-resolution image
image_filepath = f"{uncompressed_filename}.png"
compressed_image_filepath = f"{compressed_filename}.webp"
# Need to make a resize copy before running thread for thread safety
# If further optimization is needed, we can move this resize to async queue.
compressed_image = compress_image_size(image)
if synchronous:
with self._log_artifact_helper(run_id, image_filepath) as tmp_path:
image.save(tmp_path)
else:
self._log_artifact_async_helper(run_id, image_filepath, image)
if synchronous:
with self._log_artifact_helper(run_id, compressed_image_filepath) as tmp_path:
compressed_image.save(tmp_path)
else:
self._log_artifact_async_helper(run_id, compressed_image_filepath, compressed_image)
# Log tag indicating that the run includes logged image
self.set_tag(run_id, MLFLOW_LOGGED_IMAGES, True, synchronous)
def _check_artifact_file_string(self, artifact_file: str):
"""Check if the artifact_file contains any forbidden characters.
Args:
artifact_file: The run-relative artifact file path in posixpath format to which
the table is saved (e.g. "dir/file.json").
"""
characters_to_check = ['"', "'", ",", ":", "[", "]", "{", "}"]
for char in characters_to_check:
if char in artifact_file:
raise ValueError(f"The artifact_file contains forbidden character: {char}")
def _read_from_file(self, artifact_path):
import pandas as pd
if artifact_path.endswith(".json"):
return pd.read_json(artifact_path, orient="split")
if artifact_path.endswith(".parquet"):
return pd.read_parquet(artifact_path)
raise ValueError(f"Unsupported file type in {artifact_path}. Expected .json or .parquet")
[docs] @experimental
def log_table(
self,
run_id: str,
data: Union[Dict[str, Any], "pandas.DataFrame"],
artifact_file: str,
) -> None:
"""
Log a table to MLflow Tracking as a JSON artifact. If the artifact_file already exists
in the run, the data would be appended to the existing artifact_file.
Args:
run_id: String ID of the run.
data: Dictionary or pandas.DataFrame to log.
artifact_file: The run-relative artifact file path in posixpath format to which
the table is saved (e.g. "dir/file.json").
.. code-block:: python
:test:
:caption: Dictionary Example
import mlflow
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
with mlflow.start_run() as run:
client = MlflowClient()
client.log_table(
run.info.run_id, data=table_dict, artifact_file="qabot_eval_results.json"
)
.. code-block:: python
:test:
:caption: Pandas DF Example
import mlflow
import pandas as pd
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
df = pd.DataFrame.from_dict(table_dict)
with mlflow.start_run() as run:
client = MlflowClient()
client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
.. code-block:: python
:test:
:caption: Image Column Example
import mlflow
import pandas as pd
from mlflow import MlflowClient
image = mlflow.Image([[1, 2, 3]])
table_dict = {
"inputs": ["Show me a dog", "Show me a cat"],
"outputs": [image, image],
}
df = pd.DataFrame.from_dict(table_dict)
with mlflow.start_run() as run:
client = MlflowClient()
client.log_table(run.info.run_id, data=df, artifact_file="image_gen.json")
"""
import pandas as pd
self._check_artifact_file_string(artifact_file)
if not artifact_file.endswith((".json", ".parquet")):
raise ValueError(
f"Invalid artifact file path '{artifact_file}'. Please ensure the file you are "
"trying to log as a table has a file name with either '.json' "
"or '.parquet' extension."
)
if not isinstance(data, (pd.DataFrame, dict)):
raise MlflowException.invalid_parameter_value(
"data must be a pandas.DataFrame or a dictionary"
)
if isinstance(data, dict):
try:
data = pd.DataFrame(data)
# catch error `If using all scalar values, you must pass an index`
# for data like {"inputs": "What is MLflow?"}
except ValueError:
data = pd.DataFrame([data])
# Check if the column is a `PIL.Image.Image` or `mlflow.Image` object
# and save filepath
if len(data.select_dtypes(include=["object"]).columns) > 0:
def process_image(image):
# remove extension from artifact_file
table_name, _ = os.path.splitext(artifact_file)
# save image to path
filepath = posixpath.join("table_images", table_name, str(uuid.uuid4()))
image_filepath = filepath + ".png"
compressed_image_filepath = filepath + ".webp"
with self._log_artifact_helper(run_id, image_filepath) as artifact_path:
image.save(artifact_path)
# save compressed image to path
compressed_image = compress_image_size(image)
with self._log_artifact_helper(run_id, compressed_image_filepath) as artifact_path:
compressed_image.save(artifact_path)
# return a dictionary object indicating its an image path
return {
"type": "image",
"filepath": image_filepath,
"compressed_filepath": compressed_image_filepath,
}
def check_is_image_object(obj):
return (
hasattr(obj, "save")
and callable(getattr(obj, "save"))
and hasattr(obj, "resize")
and callable(getattr(obj, "resize"))
and hasattr(obj, "size")
)
for column in data.columns:
isImage = data[column].map(lambda x: check_is_image_object(x))
if any(isImage) and not all(isImage):
raise ValueError(
f"Column `{column}` contains a mix of images and non-images. "
"Please ensure that all elements in the column are of the same type."
)
elif all(isImage):
# Save files to artifact storage
data[column] = data[column].map(lambda x: process_image(x))
def write_to_file(data, artifact_path):
if artifact_path.endswith(".json"):
data.to_json(artifact_path, orient="split", index=False, date_format="iso")
elif artifact_path.endswith(".parquet"):
data.to_parquet(artifact_path, index=False)
norm_path = posixpath.normpath(artifact_file)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
artifacts = [f.path for f in self.list_artifacts(run_id, path=artifact_dir)]
if artifact_file in artifacts:
with tempfile.TemporaryDirectory() as tmpdir:
downloaded_artifact_path = mlflow.artifacts.download_artifacts(
run_id=run_id, artifact_path=artifact_file, dst_path=tmpdir
)
existing_predictions = self._read_from_file(downloaded_artifact_path)
data = pd.concat([existing_predictions, data], ignore_index=True)
_logger.debug(
"Appending new table to already existing artifact "
f"{artifact_file} for run {run_id}."
)
with self._log_artifact_helper(run_id, artifact_file) as artifact_path:
try:
write_to_file(data, artifact_path)
except Exception as e:
raise MlflowException(
f"Failed to save {data} as table as the data is not JSON serializable. "
f"Error: {e}"
)
run = self.get_run(run_id)
# Get the current value of the tag
current_tag_value = json.loads(run.data.tags.get(MLFLOW_LOGGED_ARTIFACTS, "[]"))
tag_value = {"path": artifact_file, "type": "table"}
# Append the new tag value to the list if one doesn't exists
if tag_value not in current_tag_value:
current_tag_value.append(tag_value)
# Set the tag with the updated list
self.set_tag(run_id, MLFLOW_LOGGED_ARTIFACTS, json.dumps(current_tag_value))
[docs] @experimental
def load_table(
self,
experiment_id: str,
artifact_file: str,
run_ids: Optional[List[str]] = None,
extra_columns: Optional[List[str]] = None,
) -> "pandas.DataFrame":
"""
Load a table from MLflow Tracking as a pandas.DataFrame. The table is loaded from the
specified artifact_file in the specified run_ids. The extra_columns are columns that
are not in the table but are augmented with run information and added to the DataFrame.
Args:
experiment_id: The experiment ID to load the table from.
artifact_file: The run-relative artifact file path in posixpath format to which
table to load (e.g. "dir/file.json").
run_ids: Optional list of run_ids to load the table from. If no run_ids are
specified, the table is loaded from all runs in the current experiment.
extra_columns: Optional list of extra columns to add to the returned DataFrame
For example, if extra_columns=["run_id"], then the returned DataFrame
will have a column named run_id.
Returns:
pandas.DataFrame containing the loaded table if the artifact exists
or else throw a MlflowException.
.. code-block:: python
:test:
:caption: Example with passing run_ids
import mlflow
import pandas as pd
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
df = pd.DataFrame.from_dict(table_dict)
client = MlflowClient()
run = client.create_run(experiment_id="0")
client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
loaded_table = client.load_table(
experiment_id="0",
artifact_file="qabot_eval_results.json",
run_ids=[
run.info.run_id,
],
# Append a column containing the associated run ID for each row
extra_columns=["run_id"],
)
.. code-block:: python
:test:
:caption: Example with passing no run_ids
# Loads the table with the specified name for all runs in the given
# experiment and joins them together
import mlflow
import pandas as pd
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
df = pd.DataFrame.from_dict(table_dict)
client = MlflowClient()
run = client.create_run(experiment_id="0")
client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
loaded_table = client.load_table(
experiment_id="0",
artifact_file="qabot_eval_results.json",
# Append the run ID and the parent run ID to the table
extra_columns=["run_id"],
)
"""
import pandas as pd
self._check_artifact_file_string(artifact_file)
subset_tag_value = f'"path"%:%"{artifact_file}",%"type"%:%"table"'
# Build the filter string
filter_string = f"tags.{MLFLOW_LOGGED_ARTIFACTS} LIKE '%{subset_tag_value}%'"
if run_ids:
list_run_ids = ",".join(map(repr, run_ids))
filter_string += f" and attributes.run_id IN ({list_run_ids})"
runs = mlflow.search_runs(experiment_ids=[experiment_id], filter_string=filter_string)
if run_ids and len(run_ids) != len(runs):
_logger.warning(
"Not all runs have the specified table artifact. Some runs will be skipped."
)
# TODO: Add parallelism support here
def get_artifact_data(run):
run_id = run.run_id
norm_path = posixpath.normpath(artifact_file)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
existing_predictions = pd.DataFrame()
artifacts = [
f.path for f in self.list_artifacts(run_id, path=artifact_dir) if not f.is_dir
]
if artifact_file in artifacts:
with tempfile.TemporaryDirectory() as tmpdir:
downloaded_artifact_path = mlflow.artifacts.download_artifacts(
run_id=run_id,
artifact_path=artifact_file,
dst_path=tmpdir,
)
existing_predictions = self._read_from_file(downloaded_artifact_path)
if extra_columns is not None:
for column in extra_columns:
if column in existing_predictions:
column_name = f"{column}_"
_logger.warning(
f"Column name {column} already exists in the table. "
"Resolving the conflict, by appending an underscore "
"to the column name."
)
else:
column_name = column
existing_predictions[column_name] = run[column]
else:
raise MlflowException(
f"Artifact {artifact_file} not found for run {run_id}.", RESOURCE_DOES_NOT_EXIST
)
return existing_predictions
if not runs.empty:
return pd.concat(
[get_artifact_data(run) for _, run in runs.iterrows()], ignore_index=True
)
else:
raise MlflowException(
"No runs found with the corresponding table artifact.", RESOURCE_DOES_NOT_EXIST
)
def _record_logged_model(self, run_id, mlflow_model):
"""Record logged model info with the tracking server.
Args:
run_id: run_id under which the model has been logged.
mlflow_model: Model info to be recorded.
"""
self._tracking_client._record_logged_model(run_id, mlflow_model)
[docs] def list_artifacts(self, run_id: str, path=None) -> List[FileInfo]:
"""List the artifacts for a run.
Args:
run_id: The run to list artifacts from.
path: The run's relative artifact path to list from. By default it is set to None
or the root artifact path.
Returns:
List of :py:class:`mlflow.entities.FileInfo`
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_artifact_info(artifact):
print(f"artifact: {artifact.path}")
print(f"is_dir: {artifact.is_dir}")
print(f"size: {artifact.file_size}")
features = "rooms zipcode, median_price, school_rating, transport"
labels = "price"
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
# Create some artifacts and log under the above run
for file, content in [("features", features), ("labels", labels)]:
with open(f"{file}.txt", "w") as f:
f.write(content)
client.log_artifact(run.info.run_id, f"{file}.txt")
# Fetch the logged artifacts
artifacts = client.list_artifacts(run.info.run_id)
for artifact in artifacts:
print_artifact_info(artifact)
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
artifact: features.txt
is_dir: False
size: 53
artifact: labels.txt
is_dir: False
size: 5
"""
return self._tracking_client.list_artifacts(run_id, path)
[docs] def download_artifacts(self, run_id: str, path: str, dst_path: Optional[str] = None) -> str:
"""
Download an artifact file or directory from a run to a local directory if applicable,
and return a local path for it.
Args:
run_id: The run to download artifacts from.
path: Relative source path to the desired artifact.
dst_path: Absolute path of the local filesystem destination directory to which to
download the specified artifacts. This directory must already exist.
If unspecified, the artifacts will either be downloaded to a new
uniquely-named directory on the local filesystem or will be returned
directly in the case of the LocalArtifactRepository.
Returns:
Local path of desired artifact.
.. code-block:: python
:caption: Example
import os
import mlflow
from mlflow import MlflowClient
features = "rooms, zipcode, median_price, school_rating, transport"
with open("features.txt", "w") as f:
f.write(features)
# Log artifacts
with mlflow.start_run() as run:
mlflow.log_artifact("features.txt", artifact_path="features")
# Download artifacts
client = MlflowClient()
local_dir = "/tmp/artifact_downloads"
if not os.path.exists(local_dir):
os.mkdir(local_dir)
local_path = client.download_artifacts(run.info.run_id, "features", local_dir)
print(f"Artifacts downloaded in: {local_path}")
print(f"Artifacts: {os.listdir(local_path)}")
.. code-block:: text
:caption: Output
Artifacts downloaded in: /tmp/artifact_downloads/features
Artifacts: ['features.txt']
"""
return self._tracking_client.download_artifacts(run_id, path, dst_path)
[docs] def set_terminated(
self, run_id: str, status: Optional[str] = None, end_time: Optional[int] = None
) -> None:
"""Set a run's status to terminated.
Args:
status: A string value of :py:class:`mlflow.entities.RunStatus`. Defaults to "FINISHED".
end_time: If not provided, defaults to the current time.
.. code-block:: python
from mlflow import MlflowClient
def print_run_info(r):
print(f"run_id: {r.info.run_id}")
print(f"status: {r.info.status}")
# Create a run under the default experiment (whose id is '0').
# Since this is low-level CRUD operation, this method will create a run.
# To end the run, you'll have to explicitly terminate it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Terminate the run and fetch updated status. By default,
# the status is set to "FINISHED". Other values you can
# set are "KILLED", "FAILED", "RUNNING", or "SCHEDULED".
client.set_terminated(run.info.run_id, status="KILLED")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
run_id: 575fb62af83f469e84806aee24945973
status: RUNNING
--
run_id: 575fb62af83f469e84806aee24945973
status: KILLED
"""
self._tracking_client.set_terminated(run_id, status, end_time)
[docs] def delete_run(self, run_id: str) -> None:
"""Deletes a run with the given ID.
Args:
run_id: The unique run id to delete.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
run_id = run.info.run_id
print(f"run_id: {run_id}; lifecycle_stage: {run.info.lifecycle_stage}")
print("--")
client.delete_run(run_id)
del_run = client.get_run(run_id)
print(f"run_id: {run_id}; lifecycle_stage: {del_run.info.lifecycle_stage}")
.. code-block:: text
:caption: Output
run_id: a61c7a1851324f7094e8d5014c58c8c8; lifecycle_stage: active
run_id: a61c7a1851324f7094e8d5014c58c8c8; lifecycle_stage: deleted
"""
self._tracking_client.delete_run(run_id)
[docs] def restore_run(self, run_id: str) -> None:
"""Restores a deleted run with the given ID.
Args:
run_id: The unique run id to restore.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
run_id = run.info.run_id
print(f"run_id: {run_id}; lifecycle_stage: {run.info.lifecycle_stage}")
client.delete_run(run_id)
del_run = client.get_run(run_id)
print(f"run_id: {run_id}; lifecycle_stage: {del_run.info.lifecycle_stage}")
client.restore_run(run_id)
rest_run = client.get_run(run_id)
print(f"run_id: {run_id}; lifecycle_stage: {rest_run.info.lifecycle_stage}")
.. code-block:: text
:caption: Output
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: active
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: deleted
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: active
"""
self._tracking_client.restore_run(run_id)
[docs] def search_runs(
self,
experiment_ids: List[str],
filter_string: str = "",
run_view_type: int = ViewType.ACTIVE_ONLY,
max_results: int = SEARCH_MAX_RESULTS_DEFAULT,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[Run]:
"""
Search for Runs that fit the specified criteria.
Args:
experiment_ids: List of experiment IDs, or a single int or string id.
filter_string: Filter query string, defaults to searching all runs.
run_view_type: one of enum values ACTIVE_ONLY, DELETED_ONLY, or ALL runs
defined in :py:class:`mlflow.entities.ViewType`.
max_results: Maximum number of runs desired.
order_by: List of columns to order by (e.g., "metrics.rmse"). The ``order_by`` column
can contain an optional ``DESC`` or ``ASC`` value. The default is ``ASC``.
The default ordering is to sort by ``start_time DESC``, then ``run_id``.
page_token: Token specifying the next page of results. It should be obtained from
a ``search_runs`` call.
Returns:
A :py:class:`PagedList <mlflow.store.entities.PagedList>` of
:py:class:`Run <mlflow.entities.Run>` objects that satisfy the search expressions.
If the underlying tracking store supports pagination, the token for the next page may
be obtained via the ``token`` attribute of the returned object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.entities import ViewType
def print_run_info(runs):
for r in runs:
print(f"run_id: {r.info.run_id}")
print(f"lifecycle_stage: {r.info.lifecycle_stage}")
print(f"metrics: {r.data.metrics}")
# Exclude mlflow system tags
tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")}
print(f"tags: {tags}")
# Create an experiment and log two runs with metrics and tags under the experiment
experiment_id = mlflow.create_experiment("Social NLP Experiments")
with mlflow.start_run(experiment_id=experiment_id) as run:
mlflow.log_metric("m", 1.55)
mlflow.set_tag("s.release", "1.1.0-RC")
with mlflow.start_run(experiment_id=experiment_id):
mlflow.log_metric("m", 2.50)
mlflow.set_tag("s.release", "1.2.0-GA")
# Search all runs under experiment id and order them by
# descending value of the metric 'm'
client = MlflowClient()
runs = client.search_runs(experiment_id, order_by=["metrics.m DESC"])
print_run_info(runs)
print("--")
# Delete the first run
client.delete_run(run_id=run.info.run_id)
# Search only deleted runs under the experiment id and use a case insensitive pattern
# in the filter_string for the tag.
filter_string = "tags.s.release ILIKE '%rc%'"
runs = client.search_runs(
experiment_id, run_view_type=ViewType.DELETED_ONLY, filter_string=filter_string
)
print_run_info(runs)
.. code-block:: text
:caption: Output
run_id: 0efb2a68833d4ee7860a964fad31cb3f
lifecycle_stage: active
metrics: {'m': 2.5}
tags: {'s.release': '1.2.0-GA'}
run_id: 7ab027fd72ee4527a5ec5eafebb923b8
lifecycle_stage: active
metrics: {'m': 1.55}
tags: {'s.release': '1.1.0-RC'}
--
run_id: 7ab027fd72ee4527a5ec5eafebb923b8
lifecycle_stage: deleted
metrics: {'m': 1.55}
tags: {'s.release': '1.1.0-RC'}
"""
return self._tracking_client.search_runs(
experiment_ids, filter_string, run_view_type, max_results, order_by, page_token
)
# Registry API
# Registered Model Methods
[docs] def create_registered_model(
self, name: str, tags: Optional[Dict[str, Any]] = None, description: Optional[str] = None
) -> RegisteredModel:
"""
Create a new registered model in backend store.
Args:
name: Name of the new model. This is expected to be unique in the backend store.
tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.model_registry.RegisteredModelTag` objects.
description: Description of the model.
Returns:
A single object of :py:class:`mlflow.entities.model_registry.RegisteredModel`
created by backend.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_model_info(rm):
print(f"name: {rm.name}")
print(f"tags: {rm.tags}")
print(f"description: {rm.description}")
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
client.create_registered_model(name, tags, desc)
print_registered_model_info(client.get_registered_model(name))
.. code-block:: text
:caption: Output
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
"""
return self._get_registry_client().create_registered_model(name, tags, description)
[docs] def rename_registered_model(self, name: str, new_name: str) -> RegisteredModel:
"""Update registered model name.
Args:
name: Name of the registered model to update.
new_name: New proposed name for the registered model.
Returns:
A single updated :py:class:`mlflow.entities.model_registry.RegisteredModel` object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_model_info(rm):
print(f"name: {rm.name}")
print(f"tags: {rm.tags}")
print(f"description: {rm.description}")
name = "SocialTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
# create a new registered model name
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
client.create_registered_model(name, tags, desc)
print_registered_model_info(client.get_registered_model(name))
print("--")
# rename the model
new_name = "SocialMediaTextAnalyzer"
client.rename_registered_model(name, new_name)
print_registered_model_info(client.get_registered_model(new_name))
.. code-block:: text
:caption: Output
name: SocialTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
"""
self._get_registry_client().rename_registered_model(name, new_name)
[docs] def update_registered_model(
self, name: str, description: Optional[str] = None
) -> RegisteredModel:
"""
Updates metadata for RegisteredModel entity. Input field ``description`` should be non-None.
Backend raises exception if a registered model with given name does not exist.
Args:
name: Name of the registered model to update.
description: (Optional) New description.
Returns:
A single updated :py:class:`mlflow.entities.model_registry.RegisteredModel` object.
.. code-block:: python
:caption: Example
def print_registered_model_info(rm):
print(f"name: {rm.name}")
print(f"tags: {rm.tags}")
print(f"description: {rm.description}")
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
client.create_registered_model(name, tags, desc)
print_registered_model_info(client.get_registered_model(name))
print("--")
# Update the model's description
desc = "This sentiment analysis model classifies tweets' tone: happy, sad, angry."
client.update_registered_model(name, desc)
print_registered_model_info(client.get_registered_model(name))
.. code-block:: text
:caption: Output
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies tweets' tone: happy, sad, angry.
"""
if description is None:
raise MlflowException("Attempting to update registered model with no new field values.")
return self._get_registry_client().update_registered_model(
name=name, description=description
)
[docs] def delete_registered_model(self, name: str):
"""
Delete registered model.
Backend raises exception if a registered model with given name does not exist.
Args:
name: Name of the registered model to delete.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_models_info(r_models):
print("--")
for rm in r_models:
print(f"name: {rm.name}")
print(f"tags: {rm.tags}")
print(f"description: {rm.description}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Register a couple of models with respective names, tags, and descriptions
for name, tags, desc in [
("name1", {"t1": "t1"}, "description1"),
("name2", {"t2": "t2"}, "description2"),
]:
client.create_registered_model(name, tags, desc)
# Fetch all registered models
print_registered_models_info(client.search_registered_models())
# Delete one registered model and fetch again
client.delete_registered_model("name1")
print_registered_models_info(client.search_registered_models())
.. code-block:: text
:caption: Output
--
name: name1
tags: {'t1': 't1'}
description: description1
name: name2
tags: {'t2': 't2'}
description: description2
--
name: name2
tags: {'t2': 't2'}
description: description2
"""
self._get_registry_client().delete_registered_model(name)
[docs] def search_registered_models(
self,
filter_string: Optional[str] = None,
max_results: int = SEARCH_REGISTERED_MODEL_MAX_RESULTS_DEFAULT,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[RegisteredModel]:
"""
Search for registered models in backend that satisfy the filter criteria.
Args:
filter_string: Filter query string (e.g., "name = 'a_model_name' and tag.key =
'value1'"), defaults to searching for all registered models. The following
identifiers, comparators, and logical operators are supported.
Identifiers
- ``name``: registered model name.
- ``tags.<tag_key>``: registered model tag. If ``tag_key`` contains spaces, it
must be wrapped with backticks (e.g., "tags.`extra key`").
Comparators
- ``=``: Equal to.
- ``!=``: Not equal to.
- ``LIKE``: Case-sensitive pattern match.
- ``ILIKE``: Case-insensitive pattern match.
Logical operators
- ``AND``: Combines two sub-queries and returns True if both of them are True.
max_results: Maximum number of registered models desired.
order_by: List of column names with ASC|DESC annotation, to be used for ordering
matching search results.
page_token: Token specifying the next page of results. It should be obtained from
a ``search_registered_models`` call.
Returns:
A PagedList of :py:class:`mlflow.entities.model_registry.RegisteredModel` objects
that satisfy the search expressions. The pagination token for the next page can be
obtained via the ``token`` attribute of the object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
client = MlflowClient()
# Get search results filtered by the registered model name
model_name = "CordobaWeatherForecastModel"
filter_string = f"name='{model_name}'"
results = client.search_registered_models(filter_string=filter_string)
print("-" * 80)
for res in results:
for mv in res.latest_versions:
print(f"name={mv.name}; run_id={mv.run_id}; version={mv.version}")
# Get search results filtered by the registered model name that matches
# prefix pattern
filter_string = "name LIKE 'Boston%'"
results = client.search_registered_models(filter_string=filter_string)
print("-" * 80)
for res in results:
for mv in res.latest_versions:
print(f"name={mv.name}; run_id={mv.run_id}; version={mv.version}")
# Get all registered models and order them by ascending order of the names
results = client.search_registered_models(order_by=["name ASC"])
print("-" * 80)
for res in results:
for mv in res.latest_versions:
print(f"name={mv.name}; run_id={mv.run_id}; version={mv.version}")
.. code-block:: text
:caption: Output
------------------------------------------------------------------------------------
name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
------------------------------------------------------------------------------------
name=BostonWeatherForecastModel; run_id=ddc51b9407a54b2bb795c8d680e63ff6; version=1
name=BostonWeatherForecastModel; run_id=48ac94350fba40639a993e1b3d4c185d; version=2
-----------------------------------------------------------------------------------
name=AzureWeatherForecastModel; run_id=5fcec6c4f1c947fc9295fef3fa21e52d; version=1
name=AzureWeatherForecastModel; run_id=8198cb997692417abcdeb62e99052260; version=3
name=BostonWeatherForecastModel; run_id=ddc51b9407a54b2bb795c8d680e63ff6; version=1
name=BostonWeatherForecastModel; run_id=48ac94350fba40639a993e1b3d4c185d; version=2
name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
"""
return self._get_registry_client().search_registered_models(
filter_string, max_results, order_by, page_token
)
[docs] def get_registered_model(self, name: str) -> RegisteredModel:
"""Get a registered model.
Args:
name: Name of the registered model to get.
Returns:
A single :py:class:`mlflow.entities.model_registry.RegisteredModel` object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_model_info(rm):
print("--")
print(f"name: {rm.name}")
print(f"tags: {rm.tags}")
print(f"description: {rm.description}")
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Create and fetch the registered model
client.create_registered_model(name, tags, desc)
model = client.get_registered_model(name)
print_model_info(model)
.. code-block:: text
:caption: Output
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
"""
return self._get_registry_client().get_registered_model(name)
[docs] @deprecated(since="2.9.0", impact=_STAGES_DEPRECATION_WARNING)
def get_latest_versions(
self, name: str, stages: Optional[List[str]] = None
) -> List[ModelVersion]:
"""
Latest version models for each requests stage. If no ``stages`` provided, returns the
latest version for each stage.
Args:
name: Name of the registered model from which to get the latest versions.
stages: List of desired stages. If input list is None, return latest versions for
for ALL_STAGES.
Returns:
List of :py:class:`mlflow.entities.model_registry.ModelVersion` objects.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_models_info(mv):
for m in mv:
print(f"name: {m.name}")
print(f"latest version: {m.version}")
print(f"run_id: {m.run_id}")
print(f"current_stage: {m.current_stage}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Create two runs Log MLflow entities
with mlflow.start_run() as run1:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
with mlflow.start_run() as run2:
params = {"n_estimators": 6, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
name = "RandomForestRegression"
client = MlflowClient()
client.create_registered_model(name)
# Create a two versions of the rfr model under the registered model name
for run_id in [run1.info.run_id, run2.info.run_id]:
model_uri = f"runs:/{run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run_id)
print(f"model version {mv.version} created")
# Fetch latest version; this will be version 2
print("--")
print_models_info(client.get_latest_versions(name, stages=["None"]))
.. code-block:: text
:caption: Output
model version 1 created
model version 2 created
--
name: RandomForestRegression
latest version: 2
run_id: 31165664be034dc698c52a4bdeb71663
current_stage: None
"""
return self._get_registry_client().get_latest_versions(name, stages)
[docs] def set_registered_model_tag(self, name, key, value) -> None:
"""Set a tag for the registered model.
Args:
name: Registered model name.
key: Tag key to log.
value: Tag value log.
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_model_info(rm):
print("--")
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework1": "Spark NLP"}
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Create registered model, set an additional tag, and fetch
# update model info
client.create_registered_model(name, tags, desc)
model = client.get_registered_model(name)
print_model_info(model)
client.set_registered_model_tag(name, "nlp.framework2", "VADER")
model = client.get_registered_model(name)
print_model_info(model)
.. code-block:: text
:caption: Output
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework1': 'Spark NLP'}
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework1': 'Spark NLP', 'nlp.framework2': 'VADER'}
"""
self._get_registry_client().set_registered_model_tag(name, key, value)
[docs] def delete_registered_model_tag(self, name: str, key: str) -> None:
"""Delete a tag associated with the registered model.
Args:
name: Registered model name.
key: Registered model tag key.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_models_info(r_models):
print("--")
for rm in r_models:
print(f"name: {rm.name}")
print(f"tags: {rm.tags}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Register a couple of models with respective names and tags
for name, tags in [("name1", {"t1": "t1"}), ("name2", {"t2": "t2"})]:
client.create_registered_model(name, tags)
# Fetch all registered models
print_registered_models_info(client.search_registered_models())
# Delete a tag from model `name2`
client.delete_registered_model_tag("name2", "t2")
print_registered_models_info(client.search_registered_models())
.. code-block:: text
:caption: Output
--
name: name1
tags: {'t1': 't1'}
name: name2
tags: {'t2': 't2'}
--
name: name1
tags: {'t1': 't1'}
name: name2
tags: {}
"""
self._get_registry_client().delete_registered_model_tag(name, key)
# Model Version Methods
def _create_model_version(
self,
name: str,
source: str,
run_id: Optional[str] = None,
tags: Optional[Dict[str, Any]] = None,
run_link: Optional[str] = None,
description: Optional[str] = None,
await_creation_for: int = DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
local_model_path: Optional[str] = None,
) -> ModelVersion:
tracking_uri = self._tracking_client.tracking_uri
if (
not run_link
and is_databricks_uri(tracking_uri)
and tracking_uri != self._registry_uri
and not is_databricks_unity_catalog_uri(self._registry_uri)
):
if not run_id:
eprint(
"Warning: no run_link will be recorded with the model version "
"because no run_id was given"
)
else:
run_link = get_databricks_run_url(tracking_uri, run_id)
new_source = source
if is_databricks_uri(self._registry_uri) and tracking_uri != self._registry_uri:
# Print out some info for user since the copy may take a while for large models.
eprint(
"=== Copying model files from the source location to the model"
+ " registry workspace ==="
)
new_source = _upload_artifacts_to_databricks(
source, run_id, tracking_uri, self._registry_uri
)
# NOTE: we can't easily delete the target temp location due to the async nature
# of the model version creation - printing to let the user know.
eprint(
f"=== Source model files were copied to {new_source}"
+ " in the model registry workspace. You may want to delete the files once the"
+ " model version is in 'READY' status. You can also find this location in the"
+ " `source` field of the created model version. ==="
)
return self._get_registry_client().create_model_version(
name=name,
source=new_source,
run_id=run_id,
tags=tags,
run_link=run_link,
description=description,
await_creation_for=await_creation_for,
local_model_path=local_model_path,
)
[docs] def create_model_version(
self,
name: str,
source: str,
run_id: Optional[str] = None,
tags: Optional[Dict[str, Any]] = None,
run_link: Optional[str] = None,
description: Optional[str] = None,
await_creation_for: int = DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
) -> ModelVersion:
"""
Create a new model version from given source.
Args:
name: Name for the containing registered model.
source: URI indicating the location of the model artifacts. The artifact URI can be
run relative (e.g. ``runs:/<run_id>/<model_artifact_path>``), a model
registry URI (e.g. ``models:/<model_name>/<version>``), or other URIs
supported by the model registry backend (e.g. `"s3://my_bucket/my/model"`).
run_id: Run ID from MLflow tracking server that generated the model.
tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.model_registry.ModelVersionTag` objects.
run_link: Link to the run from an MLflow tracking server that generated this model.
description: Description of the version.
await_creation_for: Number of seconds to wait for the model version to finish being
created and is in ``READY`` status. By default, the function
waits for five minutes. Specify 0 or None to skip waiting.
Returns:
Single :py:class:`mlflow.entities.model_registry.ModelVersion` object created by
backend.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
desc = "A new version of the model"
runs_uri = f"runs:/{run.info.run_id}/sklearn-model"
model_src = RunsArtifactRepository.get_underlying_uri(runs_uri)
mv = client.create_model_version(name, model_src, run.info.run_id, description=desc)
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
print(f"Description: {mv.description}")
print(f"Status: {mv.status}")
print(f"Stage: {mv.current_stage}")
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Description: A new version of the model
Status: READY
Stage: None
"""
return self._create_model_version(
name=name,
source=source,
run_id=run_id,
tags=tags,
run_link=run_link,
description=description,
await_creation_for=await_creation_for,
)
[docs] def copy_model_version(self, src_model_uri, dst_name) -> ModelVersion:
"""
Copy a model version from one registered model to another as a new model version.
Args:
src_model_uri: The model URI of the model version to copy. This must be a model
registry URI with a `"models:/"` scheme (e.g., `"models:/iris_model@champion"`).
dst_name: The name of the registered model to copy the model version to. If a
registered model with this name does not exist, it will be created.
Returns:
Single :py:class:`mlflow.entities.model_registry.ModelVersion` object representing
the copied model version.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
print(f"Source: {mv.source}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Log a model
with mlflow.start_run() as run:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Create source model version
client = MlflowClient()
src_name = "RandomForestRegression-staging"
client.create_registered_model(src_name)
src_uri = f"runs:/{run.info.run_id}/sklearn-model"
mv_src = client.create_model_version(src_name, src_uri, run.info.run_id)
print_model_version_info(mv_src)
print("--")
# Copy the source model version into a new registered model
dst_name = "RandomForestRegression-production"
src_model_uri = f"models:/{mv_src.name}/{mv_src.version}"
mv_copy = client.copy_model_version(src_model_uri, dst_name)
print_model_version_info(mv_copy)
.. code-block:: text
:caption: Output
Name: RandomForestRegression-staging
Version: 1
Source: runs:/53e08bb38f0c487fa36c5872515ed998/sklearn-model
--
Name: RandomForestRegression-production
Version: 1
Source: models:/RandomForestRegression-staging/1
"""
if urllib.parse.urlparse(src_model_uri).scheme != "models":
raise MlflowException(
f"Unsupported source model URI: '{src_model_uri}'. The `copy_model_version` API "
"only copies models stored in the 'models:/' scheme."
)
client = self._get_registry_client()
try:
src_name, src_version = get_model_name_and_version(client, src_model_uri)
src_mv = client.get_model_version(src_name, src_version)
except MlflowException as e:
raise MlflowException(
f"Failed to fetch model version from source model URI: '{src_model_uri}'. "
f"Error: {e}"
) from e
return client.copy_model_version(src_mv=src_mv, dst_name=dst_name)
[docs] def update_model_version(
self, name: str, version: str, description: Optional[str] = None
) -> ModelVersion:
"""
Update metadata associated with a model version in backend.
Args:
name: Name of the containing registered model.
version: Version number of the model version.
description: New description.
Returns:
A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
print(f"Description: {mv.description}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
model_uri = f"runs:/{run.info.run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
print("--")
# Update model version's description
desc = "A new version of the model using ensemble trees"
mv = client.update_model_version(name, mv.version, desc)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Description: None
--
Name: RandomForestRegression
Version: 1
Description: A new version of the model using ensemble trees
"""
if description is None:
raise MlflowException("Attempting to update model version with no new field values.")
return self._get_registry_client().update_model_version(
name=name, version=version, description=description
)
[docs] @deprecated(since="2.9.0", impact=_STAGES_DEPRECATION_WARNING)
def transition_model_version_stage(
self, name: str, version: str, stage: str, archive_existing_versions: bool = False
) -> ModelVersion:
"""
Update model version stage.
Args:
name: Registered model name.
version: Registered model version.
stage: New desired stage for this model version.
archive_existing_versions: If this flag is set to ``True``, all existing model
versions in the stage will be automatically moved to the "archived" stage. Only
valid when ``stage`` is ``"staging"`` or ``"production"`` otherwise an error will be
raised.
Returns:
A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
print(f"Description: {mv.description}")
print(f"Stage: {mv.current_stage}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
desc = "A new version of the model using ensemble trees"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
model_uri = f"runs:/{run.info.run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run.info.run_id, description=desc)
print_model_version_info(mv)
print("--")
# transition model version from None -> staging
mv = client.transition_model_version_stage(name, mv.version, "staging")
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Description: A new version of the model using ensemble trees
Stage: None
--
Name: RandomForestRegression
Version: 1
Description: A new version of the model using ensemble trees
Stage: Staging
"""
return self._get_registry_client().transition_model_version_stage(
name, version, stage, archive_existing_versions
)
[docs] def delete_model_version(self, name: str, version: str) -> None:
"""
Delete model version in backend.
Args:
name: Name of the containing registered model.
version: Version number of the model version.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_models_info(mv):
for m in mv:
print(f"name: {m.name}")
print(f"latest version: {m.version}")
print(f"run_id: {m.run_id}")
print(f"current_stage: {m.current_stage}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Create two runs and log MLflow entities
with mlflow.start_run() as run1:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
with mlflow.start_run() as run2:
params = {"n_estimators": 6, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
name = "RandomForestRegression"
client = MlflowClient()
client.create_registered_model(name)
# Create a two versions of the rfr model under the registered model name
for run_id in [run1.info.run_id, run2.info.run_id]:
model_uri = f"runs:/{run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run_id)
print(f"model version {mv.version} created")
print("--")
# Fetch latest version; this will be version 2
models = client.get_latest_versions(name, stages=["None"])
print_models_info(models)
print("--")
# Delete the latest model version 2
print(f"Deleting model version {mv.version}")
client.delete_model_version(name, mv.version)
models = client.get_latest_versions(name, stages=["None"])
print_models_info(models)
.. code-block:: text
:caption: Output
model version 1 created
model version 2 created
--
name: RandomForestRegression
latest version: 2
run_id: 9881172ef10f4cb08df3ed452c0c362b
current_stage: None
--
Deleting model version 2
name: RandomForestRegression
latest version: 1
run_id: 9165d4f8aa0a4d069550824bdc55caaf
current_stage: None
"""
self._get_registry_client().delete_model_version(name, version)
[docs] def get_model_version(self, name: str, version: str) -> ModelVersion:
"""
Converts the docstring args and returns to google style.
Args:
name: Name of the containing registered model.
version: Version number as an integer of the model version.
Returns:
A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Create two runs Log MLflow entities
with mlflow.start_run() as run1:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
with mlflow.start_run() as run2:
params = {"n_estimators": 6, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
name = "RandomForestRegression"
client = MlflowClient()
client.create_registered_model(name)
# Create a two versions of the rfr model under the registered model name
for run_id in [run1.info.run_id, run2.info.run_id]:
model_uri = f"runs:/{run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run_id)
print(f"model version {mv.version} created")
print("--")
# Fetch the last version; this will be version 2
mv = client.get_model_version(name, mv.version)
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
.. code-block:: text
:caption: Output
model version 1 created
model version 2 created
--
Name: RandomForestRegression
Version: 2
"""
return self._get_registry_client().get_model_version(name, version)
[docs] def get_model_version_download_uri(self, name: str, version: str) -> str:
"""
Get the download location in Model Registry for this model version.
Args:
name: Name of the containing registered model.
version: Version number as an integer of the model version.
Returns:
A single URI location that allows reads for downloading.
.. code-block:: python
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
model_uri = f"runs:/{run.info.run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run.info.run_id)
artifact_uri = client.get_model_version_download_uri(name, mv.version)
print(f"Download URI: {artifact_uri}")
.. code-block:: text
Download URI: runs:/027d7bbe81924c5a82b3e4ce979fcab7/sklearn-model
"""
return self._get_registry_client().get_model_version_download_uri(name, version)
[docs] def search_model_versions(
self,
filter_string: Optional[str] = None,
max_results: int = SEARCH_MODEL_VERSION_MAX_RESULTS_DEFAULT,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[ModelVersion]:
"""
Search for model versions in backend that satisfy the filter criteria.
.. warning:
The model version search results may not have aliases populated for performance reasons.
Args:
filter_string: Filter query string
(e.g., ``"name = 'a_model_name' and tag.key = 'value1'"``),
defaults to searching for all model versions. The following identifiers,
comparators, and logical operators are supported.
Identifiers
- ``name``: model name.
- ``source_path``: model version source path.
- ``run_id``: The id of the mlflow run that generates the model version.
- ``tags.<tag_key>``: model version tag. If ``tag_key`` contains spaces, it must
be wrapped with backticks (e.g., ``"tags.`extra key`"``).
Comparators
- ``=``: Equal to.
- ``!=``: Not equal to.
- ``LIKE``: Case-sensitive pattern match.
- ``ILIKE``: Case-insensitive pattern match.
- ``IN``: In a value list. Only ``run_id`` identifier supports ``IN`` comparator.
Logical operators
- ``AND``: Combines two sub-queries and returns True if both of them are True.
max_results: Maximum number of model versions desired.
order_by: List of column names with ASC|DESC annotation, to be used for ordering
matching search results.
page_token: Token specifying the next page of results. It should be obtained from
a ``search_model_versions`` call.
Returns:
A PagedList of :py:class:`mlflow.entities.model_registry.ModelVersion`
objects that satisfy the search expressions. The pagination token for the next
page can be obtained via the ``token`` attribute of the object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
client = MlflowClient()
# Get all versions of the model filtered by name
model_name = "CordobaWeatherForecastModel"
filter_string = f"name='{model_name}'"
results = client.search_model_versions(filter_string)
print("-" * 80)
for res in results:
print(f"name={res.name}; run_id={res.run_id}; version={res.version}")
# Get the version of the model filtered by run_id
run_id = "e14afa2f47a040728060c1699968fd43"
filter_string = f"run_id='{run_id}'"
results = client.search_model_versions(filter_string)
print("-" * 80)
for res in results:
print(f"name={res.name}; run_id={res.run_id}; version={res.version}")
.. code-block:: text
:caption: Output
------------------------------------------------------------------------------------
name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
------------------------------------------------------------------------------------
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
"""
return self._get_registry_client().search_model_versions(
filter_string, max_results, order_by, page_token
)
[docs] @deprecated(since="2.9.0", impact=_STAGES_DEPRECATION_WARNING)
def get_model_version_stages(self, name: str, version: str) -> List[str]:
"""
This is a docstring. Here is info.
Returns:
A list of valid stages.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
# fetch valid stages
model_uri = f"runs:/{run.info.run_id}/models/sklearn-model"
mv = client.create_model_version(name, model_uri, run.info.run_id)
stages = client.get_model_version_stages(name, mv.version)
print(f"Model list of valid stages: {stages}")
.. code-block:: text
:caption: Output
Model list of valid stages: ['None', 'Staging', 'Production', 'Archived']
"""
return ALL_STAGES
[docs] def set_model_version_tag(
self,
name: str,
version: Optional[str] = None,
key: Optional[str] = None,
value: Any = None,
stage: Optional[str] = None,
) -> None:
"""Set a tag for the model version.
When stage is set, tag will be set for latest model version of the stage.
Setting both version and stage parameter will result in error.
Args:
name: Registered model name.
version: Registered model version.
key: Tag key to log. key is required.
value: Tag value to log. value is required.
stage: Registered model stage.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
print(f"Tags: {mv.tags}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
# and set a tag
model_uri = f"runs:/{run.info.run_id}/sklearn-model"
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
print("--")
# Tag using model version
client.set_model_version_tag(name, mv.version, "t", "1")
# Tag using model stage
client.set_model_version_tag(name, key="t1", value="1", stage=mv.current_stage)
mv = client.get_model_version(name, mv.version)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Tags: {}
--
Name: RandomForestRegression
Version: 1
Tags: {'t': '1', 't1': '1'}
"""
_validate_model_version_or_stage_exists(version, stage)
if stage:
warnings.warn(
"The `stage` parameter of the `set_model_version_tag` API is deprecated. "
+ _STAGES_DEPRECATION_WARNING,
category=FutureWarning,
stacklevel=2,
)
latest_versions = self.get_latest_versions(name, stages=[stage])
if not latest_versions:
raise MlflowException(f"Could not find any model version for {stage} stage")
version = latest_versions[0].version
self._get_registry_client().set_model_version_tag(name, version, key, value)
[docs] def delete_model_version_tag(
self,
name: str,
version: Optional[str] = None,
key: Optional[str] = None,
stage: Optional[str] = None,
) -> None:
"""Delete a tag associated with the model version.
When stage is set, tag will be deleted for latest model version of the stage.
Setting both version and stage parameter will result in error.
Args:
name: Registered model name.
version: Registered model version.
key: Tag key. key is required.
stage: Registered model stage.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print(f"Name: {mv.name}")
print(f"Version: {mv.version}")
print(f"Tags: {mv.tags}")
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
# and delete a tag
model_uri = f"runs:/{run.info.run_id}/sklearn-model"
tags = {"t": "1", "t1": "2"}
mv = client.create_model_version(name, model_uri, run.info.run_id, tags=tags)
print_model_version_info(mv)
print("--")
# using version to delete tag
client.delete_model_version_tag(name, mv.version, "t")
# using stage to delete tag
client.delete_model_version_tag(name, key="t1", stage=mv.current_stage)
mv = client.get_model_version(name, mv.version)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Tags: {'t': '1', 't1': '2'}
--
Name: RandomForestRegression
Version: 1
Tags: {}
"""
_validate_model_version_or_stage_exists(version, stage)
if stage:
warnings.warn(
"The `stage` parameter of the `delete_model_version_tag` API is deprecated. "
+ _STAGES_DEPRECATION_WARNING,
category=FutureWarning,
stacklevel=2,
)
latest_versions = self.get_latest_versions(name, stages=[stage])
if not latest_versions:
raise MlflowException(f"Could not find any model version for {stage} stage")
version = latest_versions[0].version
self._get_registry_client().delete_model_version_tag(name, version, key)
[docs] def set_registered_model_alias(self, name: str, alias: str, version: str) -> None:
"""
Set a registered model alias pointing to a model version.
Args:
name: Registered model name.
alias: Name of the alias. Note that aliases of the format ``v<number>``, such as
``v9`` and ``v42``, are reserved and cannot be set.
version: Registered model version number.
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_info(rm):
print("--Model--")
print("name: {}".format(rm.name))
print("aliases: {}".format(rm.aliases))
def print_model_version_info(mv):
print("--Model Version--")
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Aliases: {}".format(mv.aliases))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
model = client.get_registered_model(name)
print_model_info(model)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
# Set registered model alias
client.set_registered_model_alias(name, "test-alias", mv.version)
print()
print_model_info(model)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
--Model--
name: RandomForestRegression
aliases: {"test-alias": "1"}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
"""
_validate_model_name(name)
_validate_model_alias_name(alias)
_validate_model_version(version)
self._get_registry_client().set_registered_model_alias(name, alias, version)
[docs] def delete_registered_model_alias(self, name: str, alias: str) -> None:
"""Delete an alias associated with a registered model.
Args:
name: Registered model name.
alias: Name of the alias.
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_info(rm):
print("--Model--")
print("name: {}".format(rm.name))
print("aliases: {}".format(rm.aliases))
def print_model_version_info(mv):
print("--Model Version--")
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Aliases: {}".format(mv.aliases))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
model = client.get_registered_model(name)
print_model_info(model)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
# Set registered model alias
client.set_registered_model_alias(name, "test-alias", mv.version)
print()
print_model_info(model)
print_model_version_info(mv)
# Delete registered model alias
client.delete_registered_model_alias(name, "test-alias")
print()
print_model_info(model)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
--Model--
name: RandomForestRegression
aliases: {"test-alias": "1"}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
"""
_validate_model_name(name)
_validate_model_alias_name(alias)
self._get_registry_client().delete_registered_model_alias(name, alias)
[docs] def get_model_version_by_alias(self, name: str, alias: str) -> ModelVersion:
"""Get the model version instance by name and alias.
Args:
name: Registered model name.
alias: Name of the alias.
Returns:
A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.models import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_info(rm):
print("--Model--")
print("name: {}".format(rm.name))
print("aliases: {}".format(rm.aliases))
def print_model_version_info(mv):
print("--Model Version--")
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Aliases: {}".format(mv.aliases))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
model = client.get_registered_model(name)
print_model_info(model)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
# Set registered model alias
client.set_registered_model_alias(name, "test-alias", mv.version)
print()
print_model_info(model)
print_model_version_info(mv)
# Get model version by alias
alias_mv = client.get_model_version_by_alias(name, "test-alias")
print()
print_model_version_info(alias_mv)
.. code-block:: text
:caption: Output
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
--Model--
name: RandomForestRegression
aliases: {"test-alias": "1"}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
"""
_validate_model_name(name)
return self._get_registry_client().get_model_version_by_alias(name, alias)