mlflow.onnx
The mlflow.onnx
module provides APIs for logging and loading ONNX models in the MLflow Model
format. This module exports MLflow Models with the following flavors:
- ONNX (native) format
This is the main flavor that can be loaded back as an ONNX model object.
mlflow.pyfunc
Produced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.onnx.
get_default_conda_env
()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.onnx.
get_default_pip_requirements
()[source] - Returns
A list of default pip requirements for MLflow Models produced by this flavor. Calls to
save_model()
andlog_model()
produce a pip environment that, at minimum, contains these requirements.
-
mlflow.onnx.
load_model
(model_uri, dst_path=None)[source] Load an ONNX model from a local file or a run.
- Parameters
model_uri –
The location, in URI format, of the MLflow model, for example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
For more information about supported URI schemes, see the Artifacts Documentation.
dst_path – The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created.
- Returns
An ONNX model instance.
-
mlflow.onnx.
log_model
(onnx_model, artifact_path, conda_env=None, code_paths=None, registered_model_name=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, await_registration_for=300, pip_requirements=None, extra_pip_requirements=None, onnx_execution_providers=None, onnx_session_options=None, metadata=None, save_as_external_data=True)[source] Log an ONNX model as an MLflow artifact for the current run.
- Parameters
onnx_model – ONNX model to be saved.
artifact_path – Run-relative artifact path.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At a minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()
is added to the model. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. pip requirements fromconda_env
are written to a piprequirements.txt
file and the full conda environment is written toconda.yaml
. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "onnx==x.y.z" ], }, ], }
code_paths –
A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are prepended to the system path when the model is loaded. Files declared as dependencies for a given model should have relative imports declared from a common root path if multiple files are defined with import dependencies between them to avoid import errors when loading the model.
You can leave
code_paths
argument unset but setinfer_code_paths
toTrue
to let MLflow infer the model code paths. Seeinfer_code_paths
argument doc for details.For a detailed explanation of
code_paths
functionality, recommended usage patterns and limitations, see the code_paths usage guide.registered_model_name – If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.signature –
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – one or several instances of valid model input. The input example is used as a hint of what data to feed the model. It will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. When the
signature
parameter isNone
, the input example is used to infer a model signature.await_registration_for – Number of seconds to wait for the model version to finish being created and is in
READY
status. By default, the function waits for five minutes. Specify 0 or None to skip waiting.pip_requirements – Either an iterable of pip requirement strings (e.g.
["onnx", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes the environment this model should be run in. IfNone
, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()
from the current software environment. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.Warning
The following arguments can’t be specified at the same time:
conda_env
pip_requirements
extra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirements
andextra_pip_requirements
.onnx_execution_providers – List of strings defining onnxruntime execution providers. Defaults to example: [‘CUDAExecutionProvider’, ‘CPUExecutionProvider’] This uses GPU preferentially over CPU. See onnxruntime API for further descriptions: https://onnxruntime.ai/docs/execution-providers/
onnx_session_options – Dictionary of options to be passed to onnxruntime.InferenceSession. For example:
{ 'graph_optimization_level': 99, 'intra_op_num_threads': 1, 'inter_op_num_threads': 1, 'execution_mode': 'sequential' }
‘execution_mode’ can be set to ‘sequential’ or ‘parallel’. See onnxruntime API for further descriptions: https://onnxruntime.ai/docs/api/python/api_summary.html#sessionoptionsmetadata – Custom metadata dictionary passed to the model and stored in the MLmodel file.
save_as_external_data – Save tensors to external file(s).
- Returns
A
ModelInfo
instance that contains the metadata of the logged model.
-
mlflow.onnx.
save_model
(onnx_model, path, conda_env=None, code_paths=None, mlflow_model=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, pip_requirements=None, extra_pip_requirements=None, onnx_execution_providers=None, onnx_session_options=None, metadata=None, save_as_external_data=True)[source] Save an ONNX model to a path on the local file system.
- Parameters
onnx_model – ONNX model to be saved.
path – Local path where the model is to be saved.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At a minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()
is added to the model. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. pip requirements fromconda_env
are written to a piprequirements.txt
file and the full conda environment is written toconda.yaml
. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "onnx==x.y.z" ], }, ], }
code_paths –
A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are prepended to the system path when the model is loaded. Files declared as dependencies for a given model should have relative imports declared from a common root path if multiple files are defined with import dependencies between them to avoid import errors when loading the model.
You can leave
code_paths
argument unset but setinfer_code_paths
toTrue
to let MLflow infer the model code paths. Seeinfer_code_paths
argument doc for details.For a detailed explanation of
code_paths
functionality, recommended usage patterns and limitations, see the code_paths usage guide.mlflow_model –
mlflow.models.Model
this flavor is being added to.signature –
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – one or several instances of valid model input. The input example is used as a hint of what data to feed the model. It will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. When the
signature
parameter isNone
, the input example is used to infer a model signature.pip_requirements – Either an iterable of pip requirement strings (e.g.
["onnx", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes the environment this model should be run in. IfNone
, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()
from the current software environment. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.Warning
The following arguments can’t be specified at the same time:
conda_env
pip_requirements
extra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirements
andextra_pip_requirements
.onnx_execution_providers – List of strings defining onnxruntime execution providers. Defaults to example:
['CUDAExecutionProvider', 'CPUExecutionProvider']
This uses GPU preferentially over CPU. See onnxruntime API for further descriptions: https://onnxruntime.ai/docs/execution-providers/onnx_session_options – Dictionary of options to be passed to onnxruntime.InferenceSession. For example:
{ 'graph_optimization_level': 99, 'intra_op_num_threads': 1, 'inter_op_num_threads': 1, 'execution_mode': 'sequential' }
‘execution_mode’ can be set to ‘sequential’ or ‘parallel’. See onnxruntime API for further descriptions: https://onnxruntime.ai/docs/api/python/api_summary.html#sessionoptionsmetadata – Custom metadata dictionary passed to the model and stored in the MLmodel file.
save_as_external_data – Save tensors to external file(s).